Abstract:
The invention relates to a biosensor chip that is provided with a first electrode and a second electrode. The first electrode is provided with a holding area for holding probe molecules which can bind macromolecular biopolymers. The invention also relates to an integrated electric differentiating circuit by means of which an electric current can be detected and can be differentiated according to time, whereby said current is generated during a reduction/oxidation recycling procedure.
Abstract:
According to the invention, an electrical characteristic of a material layer (3) or layer-type material structure is measured at various points provided with connection contacts (5, 6). A mean value of the measurement, taken from a base set of IC chips, is subtracted from a respective value, and a digital word for identifying the chip in question is formed on the basis of the result thus obtained, for each IC chip. The measurement can be carried out by means of a cross-correlation, the measuring regions crossing over each other.
Abstract:
The inventive biosensor has three electrodes, the first electrode having a retaining area for retaining probe molecules which bind with the macromolecular biopolymers. The second electrode and the third electrode are configured in such a way that the redox process is part of a redox recycling system on said second and third electrodes.
Abstract:
A measuring cell for recording an electrical potential of an analyte situated on the measuring cell. The measuring cell has a sensor, a layer arranged above the sensor and electrically insulating the analyte from the sensor, and an amplifier circuit connected to the sensor on a substrate and having an input stage containing a field-effect transistor or a bipolar transistor, the sensor being at least indirectly connected to a control terminal of the field-effect transistor or of the bipolar transistor. An operating point of the amplifier circuit is set by means of a voltage or a current applied at the control terminal of the field-effect transistor or of the bipolar transistor of the input stage of the amplifier circuit.
Abstract:
A DNA chip includes a carrier and a microarray of spots containing immobilised catcher molecules which are arranged on the carrier. Each spot contains a microelectrode system for the impedance spectroscopic detection of binding events occurring between the catcher molecules and target molecules of an analyte solution applied to the spots. The microelectrode system has a pair of polarisation electrodes in order to produce an alternating electromagnetic field and a pair of sensor electrodes for measuring a voltage drop in the analyte.
Abstract:
In a first phase a first sensor signal, essentially comprising the current offset signal of the sensor, is applied to the input of an electronic circuit. The first sensor signal is fed to a first signal path and stored therein. In a second phase a second sensor signal, comprising the current offset signal and a time-dependent measured signal, is applied to the input and the stored first sensor signal is fed to the input by means of the first signal path, such that essentially the time dependent measured signal is fed by means of a second signal path coupled to the input.
Abstract:
Circuit arrangement having a sensor electrode, a first circuit unit, which is electrically coupled to the sensor electrode, and a second circuit unit, which has a first capacitor. The first circuit unit holds an electrical potential of the sensor electrode in a predetermined first reference range around a predetermined electrical desired potential by coupling the first capacitor and the sensor electrode such that there is a matching of their electrical potentials. If the second circuit unit detects the electrical potential of the first capacitor being outside a second reference range, the second circuit unit brings the first capacitor to a first electrical reference potential.
Abstract:
A DNA chip includes a carrier and a microarray of spots containing immobilised catcher molecules which are arranged on the carrier. Each spot contains a microelectrode system for the impedance spectroscopic detection of binding events occurring between the catcher molecules and target molecules of an analyte solution applied to the spots. The microelectrode system has a pair of polarisation electrodes in order to produce an alternating electromagnetic field and a pair of sensor electrodes for measuring a voltage drop in the analyte.