Abstract:
The invention relates to a method that permits the direct application of a dielectric layer to a metallic layer containing copper. According to said method, two process gases (26, 28) are excited by means of respectively different plasma powers for each substrate surface or one of the process gases (26) is excited by means of a plasma and the other process gas (28) is not excited.
Abstract:
Fluorine is deposited on a semiconductor substrate surface according to a novel process. A semiconductor substrate is placed in a reaction chamber and the substrate surface is wetted with water and/or alcohol. A compound containing fluorine is led to the substrate surface, so that a cleaned semiconductor surface covered with fluorine is produced, and the compound containing fluorine is removed from the reaction chamber. The cleaned semiconductor surface covered with fluorine is then wetted with a mixture containing at least 10% by volume of water and at least 10% by volume of alcohol, for producing a cleaned semiconductor surface covered with a predetermined amount of fluorine. The predetermined amount of fluorine is lower the higher a proportion of water in the mixture is chosen to be. Then, the water and the alcohol are removed from the semiconductor surface.
Abstract:
Eine Halbleitervorrichtung umfasst eine Halbleiterschicht mit einer ersten Elektrode, die durch ein gesintertes, leitfähiges, poröses Granulat gebildet ist und die in oder auf der Halbleiterschicht oder in oder auf zumindest einer auf der Halbleiterschicht angeordneten isolierenden Schicht gebildet ist; ferner ein dielektrisches Material, das die Oberfläche des gesinterten, leitfähigen, porösen Granulats bedeckt, und eine zweite Elektrode, die das dielektrische Material zumidnest teilweise bedeckt, wobei das dielektrische Material die zweite Elektrode von der ersten Elektrode elektrisch isoliert.
Abstract:
The present invention relates to the use of a highly concentrated solution of one or more hafnium alkoxides as precursors for hafnium oxide and hafnium oxynitride layers. The present invention relates in particular to the use of a 30 to 90% strength by weight solution of one or more hafnium alkoxides for producing hafnium oxide and hafnium oxynitride layers for CVD or ALD methods. In addition, the invention relates to a process for the production of a hafnium oxide and hafnium oxynitride layer on an article to be coated, and a hafnium alkoxide solution which contains 30 to 90% by weight of one or more hafnium alkoxides. In a further embodiment of the invention, hafnium is replaced by zirconium in said compounds.
Abstract:
Use of a mixture of a fluorine-containing and chlorine-containing gas for cleaning atomic layer deposition reactors in which the reaction mixture produced is fed into the reaction chamber to remove residues in the reactor chamber.
Abstract:
Halbleitervorrichtung, die folgende Merkmale aufweist: eine Halbleiterschicht (102); eine erste Elektrode (104), die aus einem porösen, durch Sintern eines leitfähigen Granulats erzeugten Sinterkörper gebildet ist und die in oder auf der Halbleiterschicht (102) oder in oder auf zumindest einer über die Halbleiterschicht (102) angeordneten isolierenden Schicht gebildet ist, und wobei die erste Elektrode (104) von der Halbleiterschicht bzw. von der isolierenden Schicht durch zumindest eine Barrierenschicht (110, 112) getrennt ist, wobei die Barrierenschicht (110, 112) eine Diffusion von Metall aus der ersten Elektrode (104) in die Halbleiterschicht (102) unterdrückt; ein dielektrisches Material (106), das eine Oberfläche des porösen, durch Sintern eines leitfähigen Granulats erzeugten Sinterkörpers bedeckt; und eine zweite Elektrode (108), die das dielektrische Material (106) zumindest teilweise bedeckt, wobei das dielektrische Material (106) die zweite Elektrode (108) von der ersten Elektrode (104) elektrisch isoliert.
Abstract:
Process for forming a dielectric. The process may include forming the dielectric on a metallization and capacitor arrangement. The process allows the direct application of a dielectric layer to a copper-containing metallization. Accordingly, two process gases may be excited with different plasma powers per unit substrate area, or one process gas may be excited with a plasma and another process gas may not be excited.
Abstract:
The method involves producing a layer (11') with silicon grains at a surface of a trench (103) of a semiconductor body (100), and separating individual silicon grains. A dielectric layer (104) is produced on the silicon grains in between the separated silicon grains, where the separation of individual silicon grains is performed by etching. The separation of the silicon grains is implemented by an oxidation step for surface proximity oxidation of the layer with silicon grains, where the dielectric layer is formed as a semi-isolating layer comprising polysilicon.
Abstract:
A method and apparatus for measuring the emission coefficient of a semiconductor material for light of wavelength lambda having photon energy less than the semiconductor bandgap energy is introduced. The reflection coefficient for the light of wavelength lambda is measured while the semiconductor material is being irradiated with sufficient light having photon energy greater than the bandgap energy that the semiconductor material transmits little light of wavelength lambda , and the emission coefficient is calculated from the measured reflection coefficient. The temperature of the semiconductor material can be calculated from the emission coefficient and the measured intensity of the thermally emitted radiation of wavelength lambda .