Abstract:
A complex waveform frequency matching device is disclosed. In various embodiments, the matching device comprises a plurality of radio frequency generators coupled in parallel with one another. Each subsequent one of the plurality of radio frequency generators is configured to produce a harmonic frequency related by an integral multiple to a frequency produced by any lower-frequency producing radio frequency generator, thereby generating a complex waveform. A plurality of frequency splitter circuits is coupled to an output of the plurality of radio frequency generators, and each of a plurality of matching networks has an input coupled to an output of one of the plurality of frequency splitter circuits and an output configured to be coupled to a plasma chamber.
Abstract:
An apparatus generating a plasma for removing fluorinated polymer from a substrate is disclosed. The embodiment includes a powered electrode assembly, including a powered electrode, a first dielectric layer, and a first wire mesh disposed between the powered electrode and the first dielectric layer. The embodiment also includes a grounded electrode assembly disposed opposite the powered electrode assembly so as to form a cavity wherein the plasma is generated, the first wire mesh being shielded from the plasma by the first dielectric layer when the plasma is present in the cavity, the cavity having an outlet at one end for providing the plasma to remove the fluorinated polymer.
Abstract:
An apparatus and method for adjusting the voltage applied to a Faraday shield (112) of an inductively coupled plasma etching apparatus (101) is provided. An appropriate voltage is easily and variably applied to a Faraday shield such that sputtering of a plasma can be controlled to prevent and mitigate deposition of non-volatile reaction products that adversely affect an etching process. The appropriate voltage for a particular etching process or step is applied to the Faraday shield by simply adjusting a tuning capacitor (204, 210, 208, 206). It is not necessary to mechanically reconfigure the etching apparatus to adjust the Faraday shield voltage.
Abstract:
The present invention provides a system, apparatus, and method for processing a wafer using a single frequency RF power in a plasma processing chamber. The plasma processing system includes a modulated RF power generator, a plasma processing chamber, and a match network. The modulated RF power generator is arranged to generate a modulated RF power. The plasma processing chamber is arranged to receive the modulated RF power for processing the wafer and is characterized by an internal impedance during the plasma processing. The plasma processing chamber includes an electrostatic chuck for holding the wafer in place with the electrostatic chuck including a first electrode disposed under the wafer for receiving the modulated RF power. The plasma processing chamber further includes a second electrode disposed over the wafer. The modulated RF power generates plasma and ion bombardment energy for processing the wafer. The match network is coupled between the modulated RF power generator and the plasma processing chamber to receive and transmit the modulated RF power from the modulated RF power generator to the plasma processing chamber. The match network is further configured to match an impedance of the modulated RF power generator to the internal impedance of the plasma processing chamber.
Abstract:
Disclosed is a system for processing a semiconductor wafer through plasma etching operations. The system has a process chamber that includes a support chuck for holding the semiconductor wafer and a pair of RF power sources. In another case, the system can be configured such that the electrode is grounded and the pair of RF frequencies are fed to the support chuck (bottom electrode). The system therefore includes an electrode that is positioned within the system and over the semiconductor wafer. The electrode has a center region, a first surface and a second surface. The first surface is configured to receive processing gases from a source that is external to the system and flow the processing gases into the center region. The second surface has a plurality of gas feed holes that are continuously coupled to a corresponding plurality of electrode openings that have electrode opening diameters that are greater than gas feed hole diameters of the plurality of gas feed holes. The plurality of electrode openings are configured to define an electrode surface that is defined over a wafer surface of the semiconductor wafer. The electrode surface assists in increasing an electrode plasma sheath area in order to cause a shift in bias voltage onto the wafer surface, thereby increasing the ion bombardment energy over the wafer without increasing the plasma density.
Abstract:
Disclosed is an electrode used for processing a semiconductor wafer through plasma etching operations. The electrode is disposed within a process chamber that includes a support chuck for holding the semiconductor wafer and a pair of RF power sources. The electrode has a center region, a first surface and a second surface. The first surface is configured to receive processing gases from a source and to flow the processing gases into the center region. The second surface has a plurality of gas feed holes that are continuously coupled to a corresponding plurality of electrode openings. Electrode opening diameters are greater than gas feed hole diameters. The plurality of electrode openings define an electrode surface that is over a wafer surface. The electrode surface assists in defining an electrode plasma sheath surface area which causes an increase in bias voltage onto the wafer surface, thereby increasing the ion bombardment energy over the wafer without increasing the plasma density.
Abstract:
A plasma processing chamber for processing a substrate to form electronic components thereon is disclosed. The plasma processing chamber includes a plasma-facing component having a plasma-facing surface oriented toward a plasma in the plasma processing chamber during processing of the substrate, the plasma-facing component being electrically isolated from a ground terminal. The plasma processing chamber further includes a grounding arrangement coupled to the plasma-facing component, the grounding arrangement including a first resistance circuit disposed in a first current path between the plasma-facing component and the ground terminal. The grounding arrangement further includes a RF filter arrangement disposed in at least one other current path between the plasma-facing component and the ground terminal, wherein a resistance value of the first resistance circuit is selected to substantially eliminate arcing between the plasma and the plasma-facing component during the processing of the substrate.
Abstract:
A plasma processing system that includes a temperature management system and method that can achieve very accurate temperature control over a plasma processing apparatus is disclosed. In one embodiment, the temperature management system and method operate to achieve tight temperature control over surfaces of the plasma processing apparatus which interact with the plasma during fabrication of semiconductor devices. The tight temperature control offered by the invention can be implemented with combination heating and cooling blocks such that both heating and cooling can be provided from the same thermal interface.
Abstract:
Disclosed is an electrode used for processing a semiconductor wafer through plasma etching operations. The electrode is disposed within a process chamber that includes a support chuck for holding the semiconductor wafer and a pair of RF power sources. The electrode has a center region, a first surface and a second surface. The first surface is configured to receive processing gases from a source and to flow the processing gases into the center region. The second surface has a plurality of gas feed holes that are continuously coupled to a corresponding plurality of electrode openings. Electrode opening diameters are greater than gas feed hole diameters. The plurality of electrode openings define an electrode surface that is over a wafer surface. The electrode surface assists in defining an electrode plasma sheath surface area which causes an increase in bias voltage onto the wafer surface, thereby increasing the ion bombardment energy over the wafer without increasing the plasma density.
Abstract:
A plasma processing system for processing a substrate which includes a single chamber, substantially azimuthally symmetric plasma processing chamber within which a plasma is both ignited and sustained for the processing. The plasma processing chamber has no separate plasma generation chamber. The plasma processing chamber has an upper end and a lower end. The plasma processing system includes a coupling window disposed at an upper end of the plasma processing chamber and an RF antenna arrangement disposed above a plane defined by the substrate when the substrate is disposed within the plasma processing chamber for the processing. The plasma processing system also includes an electromagnet arrangement disposed above the plane defined by the substrate. The electromagnet arrangement is configured so as to result in a radial variation in the controllable magnetic field within the plasma processing chamber in the region proximate the coupling window and antenna when at least one direct current is supplied to the electromagnet arrangement. The radial variation is effective to affect processing uniformity across the substrate. The plasma processing system additionally includes a dc power supply coupled to the electromagnet arrangement. The dc power supply has a controller to vary a magnitude of at least one direct current, thereby changing the radial variation in the controllable magnetic field within the plasma processing chamber in the region proximate the antenna to improve the processing uniformity across the substrate.