Abstract:
A first proximity head is configured to define a meniscus of a photoresist developer solution on a substrate. The meniscus is to be defined between a bottom of the first proximity head and the substrate. A second proximity head is configured to define a rinsing meniscus on the substrate and remove the rinsing meniscus from the substrate. The second proximity head is positioned to follow the first proximity head relative to a traversal direction of the first and second proximity heads over the substrate. Exposure of the substrate to the meniscus of photoresist developer solution causes previously irradiated photoresist material on the substrate to be developed to render a patterned photoresist layer. The first and second proximity heads enable precise control of a residence time of the photoresist developer solution on the substrate during the development process.
Abstract:
A plurality of substrate processing devices are disposed in a separated manner within a shared ambient environment. A conveyance device is disposed within the shared ambient environment and is defined to move a substrate through and between each of the substrate processing devices in a continuous manner. Some substrate processing devices are defined to perform dry substrate processing operations in which an energized reactive environment is created in exposure to the substrate in an absence of liquid material. Some substrate processing devices are defined to perform wet substrate processing operations in which at least one material in a liquid state is applied to the substrate. In one embodiment, a complementary pair of dry and wet substrate processing devices are disposed in the shared ambient environment in a sequential manner relative to movement of the substrate by the conveyance device.
Abstract:
A plasma confinement arrangement for controlling the volume of a plasma while processing a substrate inside a process chamber includes a chamber within which a plasma is both ignited and sustained for processing. The chamber is defined at least in part by a wall and further includes a plasma confinement arrangement. The plasma confinement arrangement includes a magnetic array disposed around the periphery of the process chamber configured to produce a magnetic field which establishes a cusp pattern on the wall of the chamber. The cusp pattern on the wall of the chamber defines areas where a plasma might damage or create cleaning problems. The cusp pattern is shifted to improve operation of the substrate processing system and to reduce the damage and/or cleaning problems caused by the plasma's interaction with the wall. Shifting of the cusp pattern can be accomplished by either moving the magnetic array or by moving the chamber wall. Movement of either component may be continuous (that is, spinning one or more magnet elements or all or part of the wall) or incremental (that is, periodically shifting the position of one or more magnet elements or all or part of the wall).
Abstract:
In chemical mechanical polishing apparatus, a wafer carrier plate is provided with a cavity for reception of a sensor positioned very close to a wafer to be polished. Energy resulting from contact between a polishing pad and an exposed surface of the wafer is transmitted only a very short distance to the sensor and is sensed by the sensor, providing data as to the nature of properties of the exposed surface of the wafer, and of transitions of those properties. Correlation methods provide graphs relating sensed energy to the surface properties, and to the transitions. The correlation graphs provide process status data for process control.
Abstract:
A process chamber with a computer system that controls the process chamber is connected to one or more sensors, which are used to monitor the process in the process chamber. The sensors are connected to the computer system in a client/server relationship, in a way that allows the sensors to be hot swappable plus and play sensors. The computer system exchanges various messages with the sensors, synchronizes with the sensors, and integrates and utilizes data sent from the sensors.
Abstract:
A plasma processing system for processing a substrate, is disclosed. The plasma processing system includes a single chamber, substantially azimuthally symmetric plasma processing chamber within which a plasma is both ignited and sustained for the processing. The plasma processing chamber has no separate plasma generation chamber. The plasma processing chamber has an upper end and a lower end. The plasma processing chamber includes a material that does not substantially react with the reactive gas chemistries that are delivered into the plasma processing chamber. In addition, the reactant gases that are flown into the plasma processing chamber are disclosed.
Abstract:
A plasma processing system that includes a plasma processing chamber that provides enhanced control over an etch process is disclosed. The plasma processing chamber is connected to a gas flow system. The gas flow system can be employed to control the release of gases into different regions within the plasma processing chamber. In addition, the volume of the released gas, e.g., the flow rate of the gas, can be adjusted by a gas flow control mechanism. In this manner, both the position and the amount of the gas that is delivered to the plasma processing chamber can be controlled. The ability to adjust the position and the amount of gas that is released into the plasma processing chamber provides for a better control over the distribution of the neutral components. This in turn enhances control over the etching process.
Abstract:
Apparatus controls the temperature of a wafer for chemical mechanical polishing operations. A wafer carrier wafer mounting surface positions a wafer adjacent to a thermal energy transfer unit for transferring energy relative to the wafer. A thermal energy detector oriented adjacent to the wafer mounting surface detects the temperature of the wafer. A controller is responsive to the detector for controlling the supply of thermal energy relative to the thermal energy transfer unit. Embodiments include defining separate areas of the wafer, providing separate sections of the thermal energy transfer unit for each separate area, and separately detecting the temperature of each separate area to separately control the supply of thermal energy relative to the thermal energy transfer unit associated with the separate area.
Abstract:
A plasma processing system that includes a plasma processing chamber that provides enhanced control over an etch process is disclosed. The plasma processing chamber is connected to a gas flow system. The gas flow system can be employed to control the release of gases into different regions within the plasma processing chamber. In addition, the volume of the released gas, e.g., the flow rate of the gas, can be adjusted by a gas flow control mechanism. In this manner, both the position and the amount of the gas that is delivered to the plasma processing chamber can be controlled. The ability to adjust the position and the amount of gas that is released into the plasma processing chamber provides for a better control over the distribution of the neutral components. This in turn enhances control over the etching process.