METHOD AND APPARATUS FOR THE IMAGING OF GASES
    11.
    发明申请
    METHOD AND APPARATUS FOR THE IMAGING OF GASES 审中-公开
    用于气体成像的方法和装置

    公开(公告)号:WO1998025129A1

    公开(公告)日:1998-06-11

    申请号:PCT/GB1997003311

    申请日:1997-12-01

    Abstract: There is disclosed a method for imaging a quantity of gas present in the atmosphere of a selected area comprising the steps of: directing background infra-red radiation from the selected area into an interferometer; imaging the infra-red radiation emerging from the interferometer onto at least one infra-red detector; obtaining a plurality of Fourier transform infra-red spectra in the 8-14 mu m spectral region, each spectrum corresponding to infra-red radiation collected from a different portion of the selected area; and displaying in a suitable form an infra-red image, said infra-red image comprising the plurality of infra-red spectra, or quantities derived therefrom; in which the temperature of the quantity of gas or ambient temperature is measured, the temperature of the background is measured, and the difference between the two measured temperatures is used to derive gas column densities from said infra-red spectra.

    Abstract translation: 公开了一种用于对存在于所选区域的气氛中的气体成像的方法,包括以下步骤:将来自所选区域的背景红外辐射引导到干涉仪中; 将从干涉仪出射的红外辐射成像到至少一个红外线检测器; 在8-14μm光谱区域中获得多个傅里叶变换红外光谱,每个光谱对应于从所选区域的不同部分收集的红外辐射; 并以合适的形式显示红外图像,所述红外图像包括多个红外光谱或从其衍生的量; 其中测量气体量或环境温度的温度,测量背景温度,并且使用两个测量温度之间的差来从所述红外光谱导出气柱密度。

    MULTI-COHERENCE IMAGING SYSTEM AND METHOD
    13.
    发明申请
    MULTI-COHERENCE IMAGING SYSTEM AND METHOD 审中-公开
    多相位成像系统与方法

    公开(公告)号:WO2007033433A1

    公开(公告)日:2007-03-29

    申请号:PCT/AU2006/001397

    申请日:2006-09-25

    Inventor: HOWARD, John

    Abstract: The present invention relates to imaging and in particular to multi-spectral imaging which relies on sampling the time-domain optical coherence at appropriately chosen set of delays. The invention has been developed primarily for use as a multi-coherence imaging system and arrangements of the invention comprise a polarizing image mask for providing angularly multiplexed, dual orthogonal polarized beams, each beam being a replica of an incoming radiation beam from a source, the polarising image mask comprising a first Wollaston prism as a first polarizing component for providing angularly multiplexed radiation beams from the incoming radiation beam, the beams being multiplexed in a first direction; and a split field polarizer comprising adjoining, orthogonally oriented polarizing materials for providing angularly multiplexed, dual orthogonal polarized radiation beams.

    Abstract translation: 本发明涉及成像,特别涉及多光谱成像,其依赖于在适当选择的延迟集合上采样时域光学相干性。 本发明主要用作多相干成像系统,本发明的装置包括用于提供角度复用的双正交偏振光束的偏振图像掩模,每个光束是来自源的入射辐射束的复制品, 所述偏振图像掩模包括第一Wollaston棱镜作为第一偏振分量,用于提供来自所述入射辐射束的角度多路复用的辐射束,所述光束在第一方向上多路复用; 以及分离场偏振器,包括邻接的正交取向的偏振材料,用于提供角度复用的双正交偏振辐射束。

    METHOD AND APPARATUS FOR THE ESTIMATION OF THE TEMPERATURE OF A BLACKBODY RADIATOR
    15.
    发明申请
    METHOD AND APPARATUS FOR THE ESTIMATION OF THE TEMPERATURE OF A BLACKBODY RADIATOR 审中-公开
    用于估计黑体散热器温度的方法和装置

    公开(公告)号:WO2003034007A1

    公开(公告)日:2003-04-24

    申请号:PCT/AU2002/001420

    申请日:2002-10-18

    Inventor: HOWARD, John

    Abstract: Remote sensing of the temperature of a greybody or blackbody radiator is effected by passing its radiation (24) through a modulated infrared filter spectrometer. The infrared filter comprises, in sequence, a band pass filter (20), a first polariser (21) which polarises the radiation, an electro-optical element (22) which splits the polarised radiation into two orthogonally polarised components, and a second polariser (23). A lens (28) images the radiation leaving the second polariser onto a detector (27). The electrical signal from the detector (27) is input to a numerical analyser. The electro-optical element (22), typically comprising a birefringent crystal assembly (25) and a birefringent trim plate (26), is configured so that the net optical delay of the orthogonally polarised components passed through it is such that the recombined components are at or near a peak or trough in their interferogram. A sinusoidally varying voltage is applied to the electro-optical element to modulate the net delay of the components passed through the electro-optical element. The numerical analyser is programmed to compute the harmonic amplitude ratio (the ratio of signal amplitudes at the fundamental and second harmonic of the frequency of the modulating voltage) of the signal that it receives from the detector (27). The harmonic amplitude ratio is a function of the temperature of the radiator, which can be estimated by reference to a calibration look-up table.

    Abstract translation: 通过使其辐射(24)通过调制的红外滤光器光谱仪来实现对灰体或黑体辐射体的温度的遥感。 红外滤光器依次包括带通滤波器(20),偏振辐射的第一偏振器(21),将偏振辐射分成两个正交极化分量的电光元件(22)和第二偏振器 (23)。 透镜(28)将离开第二偏振器的辐射图像到检测器(27)上。 来自检测器(27)的电信号被输入到数字分析器。 通常包括双折射晶体组件(25)和双折射装饰板(26)的电光元件(22)被配置为使得通过它的正交极化分量的净光学延迟使得重组组分为 在它们的干涉图中的峰或谷附近。 将正弦变化的电压施加到电光元件以调节通过电光元件的部件的净延迟。 数字分析仪被编程为计算其从检测器(27)接收的信号的谐波振幅比(在调制电压的频率的基波和二次谐波处的信号幅度的比率)。 谐波振幅比是散热器的温度的函数,可以通过参考校准查找表来估计。

    Temperature measuring device, substrate processing device and temperature measuring method
    16.
    发明专利
    Temperature measuring device, substrate processing device and temperature measuring method 审中-公开
    温度测量装置,基板加工装置和温度测量方法

    公开(公告)号:JP2013007665A

    公开(公告)日:2013-01-10

    申请号:JP2011140890

    申请日:2011-06-24

    CPC classification number: G01J5/0007 G01J2005/583

    Abstract: PROBLEM TO BE SOLVED: To provide a temperature measuring device capable of suitably measuring a temperature of a measuring object by using light interference, a substrate processing device and a temperature measuring method.SOLUTION: The temperature measuring device 1 includes a data input part 16, a peak interval calculation part 17, a light path length calculation part 20 and a temperature calculation part 21. The data input part 16 inputs a spectrum of interference light acquired by interference between a measuring beam reflected on a front face 13a of a measuring object 13 and a measuring beam reflected on a rear face 13b when a measuring beam is emitted to the front face 13a of the measuring object 13. The peak interval calculation part 17 calculates a peak interval of the input spectrum. The light path length calculation part 20 calculates light path length on the basis of the peak interval. The temperature calculation part 21 calculates a temperature of the measuring object 13 on the basis of the light path length.

    Abstract translation: 要解决的问题:提供一种能够通过使用光干涉适当地测量测量对象的温度的温度测量装置,基板处理装置和温度测量方法。

    解决方案:温度测量装置1包括数据输入部分16,峰值间隔计算部分17,光程长度计算部分20和温度计算部分21.数据输入部分16输入获取的干涉光谱 当测量光束发射到测量对象13的前表面13a时,通过在测量对象13的正面13a上反射的测量光束与在后表面13b上反射的测量光束之间的干涉。峰值间隔计算部17 计算输入光谱的峰值间隔。 光路长度计算部20基于峰值间隔计算光路长度。 温度计算部21基于光路长度计算测量对象13的温度。 版权所有(C)2013,JPO&INPIT

    온도 계측 장치, 기판 처리 장치 및 온도 계측 방법
    18.
    发明公开
    온도 계측 장치, 기판 처리 장치 및 온도 계측 방법 无效
    温度测量装置,基板加工装置和温度测量方法

    公开(公告)号:KR1020130007447A

    公开(公告)日:2013-01-18

    申请号:KR1020120067059

    申请日:2012-06-22

    CPC classification number: G01J5/0007 G01J2005/583

    Abstract: PURPOSE: A temperature measuring device, a substrate processing device, and a temperature measuring method are provided to properly measure the temperature of a measurement object by using optical interference. CONSTITUTION: A temperature measuring device(1) measures the temperature of a measurement object having a first major surface and a second major surface. The temperature measuring device comprises a data input member(16), a peak interval calculating member(17), an optical path length calculating member(20), and a temperature calculating member(21). The peak interval calculating member calculates a peak interval of spectrum. The optical path length calculating member calculates the length of an optical path from the first major surface to the second major surface on a basis of the peak interval. The temperature calculating member calculates the temperature of the measurement object on a basis of the length of the optical path. [Reference numerals] (1) Temperature measuring device; (141) Light dispersion device; (142) Light receiving unit; (16) Data input member; (17) Peak interval calculating member; (18) Peak frequency detecting member; (19) Frequency difference calculating member; (20) Optical path length calculating member; (21) Temperature calculating member; (22) Temperature correcting member

    Abstract translation: 目的:提供温度测量装置,基板处理装置和温度测量方法,以通过使用光学干涉来适当地测量测量对象的温度。 构成:温度测量装置(1)测量具有第一主表面和第二主表面的测量对象的温度。 温度测量装置包括数据输入部件(16),峰值间隔计算部件(17),光程长度计算部件(20)和温度计算部件(21)。 峰值间隔计算部件计算频谱的峰值间隔。 光路长度计算部件基于峰值间隔计算从第一主表面到第二主表面的光路的长度。 温度计算部件基于光路的长度计算测量对象的温度。 (附图标记)(1)温度测量装置; (141)光分散装置; (142)光接收单元; (16)数据输入成员; (17)峰值间隔计算部件; (18)峰值频率检测部件; (19)频率差计算部件; (20)光路长度计算部件; (21)温度计算部件; (22)温度校正部件

    온도 측정 장치 및 온도 측정 방법
    19.
    发明授权
    온도 측정 장치 및 온도 측정 방법 有权
    温度测量装置和温度测量方法

    公开(公告)号:KR101851954B1

    公开(公告)日:2018-04-25

    申请号:KR1020120029288

    申请日:2012-03-22

    Abstract: (과제) 복수의처리챔버내의온도측정대상물의온도를동시에측정할수 있는온도측정장치및 온도측정방법을제공한다. (해결수단) 광원으로부터의광을복수의측정용의광으로나누기위한제1 광분리수단과, 복수의측정용의광을각각측정광과참조광으로나누기위한복수의제2 광분리수단과, 측정광을 n개의제1∼제n 측정광으로나누기위한제3 광분리수단과, 복수의참조광을각각반사하기위한참조광반사수단과, 참조광반사수단으로부터반사하는참조광의광로길이를변화시키기위한 1개의광로길이변화수단과, 온도측정대상물로부터반사하는제1∼제n 측정광과, 참조광반사수단으로부터반사하는복수의참조광과의간섭을측정하기위한복수의광검출기를구비한온도측정장치.

    Fiber-optic sensor for strain-insensitive temperature measurements

    公开(公告)号:US09677949B1

    公开(公告)日:2017-06-13

    申请号:US14526168

    申请日:2014-10-28

    Inventor: Ming Han

    Abstract: An in-line fiber-optic temperature sensor is disclosed. In an implementation, the in-line fiber-optic temperature sensor includes an optically transmissive fiber, a reflector, a microstructured fiber defining a channel therein for receiving a fluid, and a Fabry-Perot cavity in fluid communication with the microstructured fiber. The microstructured fiber can be retained between the optically transmissive fiber and the reflector. The Fabry-Perot cavity defined by a material and configured to receive a gas having an index of refraction that changes in a known way with temperature and pressure changes in fluid communication with the channel of the microstructured fiber. The in-line fiber-optic temperature sensor also includes a chamber defined between the optically transmissive fiber and the microstructured fiber for connecting in fluid communication with a vacuum/pressure source for changing pressure. The in-line fiber-optic temperature sensor also includes a sensor for determining an optical interferometric reflection spectrum associated with the Fabry-Perot cavity.

Patent Agency Ranking