Abstract:
A filter for filtering macro-particles from a plasma beam, having a bended duct for carriage of the plasma beam, the bended duct comprising an intermediate portion connected at one end to an inlet portion having a longitudinal axis disposed on an inlet plane and at another opposite end to an outlet portion having a longitudinal axis disposed on an outlet plane. The inlet portion allows the plasma beam containing macro-particles to travel toward the intermediate portion in an incident direction and the outlet portion allows the plasma beam to travel from the intermediate portion in an emergent direction. The intermediate portion is configured to deviate the incident direction to the emergent direction at an angle of more than 90° and thereby remove macro-particles from the plasma beam as it passes through the intermediate portion. The inlet plane and outlet plane are disposed at an offset angle from each other.
Abstract:
A system for inhibiting the transport of contaminant particles with an ion beam includes an electric field generator for generating an electric field relative to a path of travel for the ion beam. A particle located in the ion beam and in a region of the electric field is charged to a polarity according to the ion beam, so that the electric field may urge the charged particle out of the ion beam.
Abstract:
A ballistic charge transport device including an edge electron emitter defining an elongated central opening therethrough with a receiving terminal (e.g. an anode) at one end of the opening and a getter at the other end. A suitable potential is applied between the emitter and the receiving terminal to attract emitted electrons to the receiving terminal and a different suitable potential is applied between the emitter and the getter so that contaminants, such as ions and other undesirable particles, are accelerated toward and absorbed by the getter.
Abstract:
A system and method of magnetically insulating the cathode of a cold-cathode electron gun is achieved. A strong magnetic field is applied in the vicinity of the cold cathode to deflect and constrain the flow of electrons emitted from structures within the electron gun. The magnetic field largely prevents re-reflected primary and secondary electrons from reaching the cathode, thereby improving the operation and increasing the life of the cold-cathode electron gun. In addition, the insulating magnetic field improves electron beam focusing and enables a reduction in the magnitude of static electric focusing fields employed in the vicinity of the cold cathode, further reducing the electron gun's susceptibility to destructive arcing.
Abstract:
An apparatus is provided for reducing particle contamination in an ion implantation system. The apparatus has an enclosure having an entrance, an exit, and at least one louvered side having a plurality of louvers defined therein. A beamline of the ion implantation system passes through the entrance and exit, wherein the plurality of louvers of the at least one louvered side are configured to mechanically filter an edge of an ion beam traveling along the beamline. The enclosure can have two louvered sides and a louvered top, wherein respective widths of the entrance and exit of the enclosure, when measured perpendicular to the beamline, are generally defined by a position of the two louvered sides with respect to one another. One or more of the louvered sides can be adjustably mounted, wherein the width of one or more of the entrance and exit of the enclosure is controllable.