Abstract:
A surface mounting structure for a surface mounting electronic component has an electronic component, a land, a wiring, and an electrical connection pattern. The electronic component has electrodes at opposite ends thereof. The land is connected to each electrode through a solder. The wiring is connected to the land and has a width which is smaller than a width of the electronic component in a width direction thereof. The wiring is connected to the electrical connection pattern. The electrical connection pattern has on a side on which the wiring is connected to the electrical connection pattern a width which is larger than the width of the electronic component in the width direction thereof.
Abstract:
One end of a power-supply bus is connected to a power supply through a ferrite bead. The power-supply bus is connected to power-supply terminals. The power-supply terminals are connected at positions in such a manner that a terminal with a higher intensity is connected closer to the other end of the power-supply bus. Ground terminals are connected to ground. Capacitors are bypass capacitors or decoupling capacitors, for example, and connected between respective power-supply terminals and ground.
Abstract:
An exemplary printed circuit board includes a substrate, a differential transmission line, and at least two weld pad pairs. The differential transmission line and the at least two weld pad pairs are disposed on the substrate. The differential transmission line includes two parallel signal conductors disposed on the substrate. Each of the two signal conductors is electrically connected to an edge of one of the weld pads of a respective pair of the at least two weld pad pairs. Thereby, the two signal conductors of the differential transmission line can extend in the same distance anywhere, particularly in the position where the two signal conductors pass the two weld pad pairs. As a result, the coupling performance and the capability of the differential transmission line to resist electromagnetic interference are both enhanced.
Abstract:
A printed wiring board on which a pattern can be formed favorably by printing and soldering even where a small part of the 1005 size or less is mounted. The printed wiring board includes a substrate; a pair of soldering lands on the substrate, the soldering lands being spaced from one another with a first side of one land opposing a first side of another land; and a mounted part having a pair of electrodes on opposite ends thereof soldered to the respective lands. A wiring line is connected to each soldering land, and an insulating element overlies the wiring lines. The insulating element has openings formed so as to expose the soldering lands therethrough. Wiring line connection elements are individually connected to only the first sides of the lands. Each insulating element opening has an edge positioned outside of the corresponding land and on the inner side of the corresponding wiring line connection element.
Abstract:
A printed wiring board on which a pattern can be formed favorably by printing and soldering even where a small part of the 1005 size or less is mounted. The printed wiring board includes a substrate; a pair of soldering lands on the substrate, the soldering lands being spaced from one another with a first side of one land opposing a first side of another land; and a mounted part having a pair of electrodes on opposite ends thereof soldered to the respective lands. A wiring line is connected to each soldering land, and an insulating element overlies the wiring lines. The insulating element has openings formed so as to expose the soldering lands therethrough. Wiring line connection elements are individually connected to only the first sides of the lands. Each insulating element opening has an edge positioned outside of the corresponding land and on the inner side of the corresponding wiring line connection element.
Abstract:
Terminal electrodes 9 for carrying a high frequency device 3 are formed on a surface of a circuit board having its reverse surface covered with a reverse surface conductor layer 6, and a plurality of signal lines 2 for exchanging a signal between the high frequency device 3 and an external circuit are formed thereon. The terminal electrode 9 is arranged at the center of the circuit board, and the signal lines 2 radially extends from the terminal electrode 9. Electromagnetic interference between the signal lines 2 can be reduced, so that out-of-band attenuation characteristics and isolation characteristics can be satisfactorily exhibited in a case where the high frequency device 3 is a duplexer.
Abstract:
A signal transmission structure for connecting a coaxial cable connector is provided. The coaxial cable connector has a signal pin. The signal transmission structure includes a reference plane and a conductive layer, and the conductive layer is located on one side of the reference plane. Moreover, the conductive layer includes a signal perforated pad, a first line segment, a second line segment, and a compensation pad. The signal pin is suitable for threading the signal perforated pad. The first line segment is connected to the signal perforated pad, and the compensation pad is connected between the first line segment and the second line segment.
Abstract:
A circuit substrate comprising a base and a plurality of conductive traces is provided. The conductive traces are disposed on the base and on the same layer. The conductive traces include at least one first conductive trace. Wherein, the base has a cut region. The end of the first conductive trace is connected to the end portion of the cut region. The included angle between the rim of the end portion of the cut region and the first conductive trace is 75° to 105°.
Abstract:
A coplanar stripline is provided, including a dielectric substrate, and first and second strip conductors, which are each formed on the dielectric substrate, parallel to each other and separated by a predetermined distance. The corrugated structure is formed at least on one side of the strip conductors, including a plurality of slits. The slits are formed periodically on the side of each of the strip conductors, which is located in the outside portion thereof and not facing the other confronting strip conductor, so that the length direction of the slit is substantially perpendicular to the direction of the electromagnetic wave transmitted through the coplanar stripline.
Abstract:
A semiconductor device includes an interposing substrate having a top surface mounting thereon a semiconductor chip and a bottom surface mounting thereon a solder ball islands. Chip electrodes of the semiconductor chip are connected to the solder ball islands through a top interconnect pattern, via holes and a bottom interconnect pattern. The second interconnect pattern has a solder-flow damping/stopping pattern in the vicinity of the solder ball islands for stopping the solder from flowing onto the bottom interconnect pattern upon melting.