Abstract:
An ion implanter has an implant wheel with a plurality of wafer carriers distributed about a periphery of the wheel. Each wafer carrier has a heat sink for removing heat from a wafer on the carrier during the implant process by thermal contact between the wafer and the heat sink. The wafer carriers have wafer retaining fences formed as cylindrical rollers with axes in the respective wafer support planes of the wafer carriers. The cylindrical surfaces of the rollers provide wafer abutment surfaces which can move transversely to the wafer support surfaces so that no transverse loading is applied by the fences to wafer edges as the wafer is pushed against the heat sink by centrifugal force. The wafer support surfaces comprise layers of elastomeric material and the movable abutment surfaces of the fences allow even thermal coupling with the heat sink over the whole area of the wafer.
Abstract:
A focused ion beam apparatus, including: a specimen transferring unit having a probe to which a micro-specimen extracted from a specimen, can be joined through a joining deposition film, for transferring the micro-specimen to a sample holder; and wherein, the specimen transferring unit holds the probe which is joined through the joining deposition film to the micro-specimen extracted from the specimen, and the sample stage moves so that the sample holder mounted on the holder clasp is provided into an irradiated range of the focused ion beam, and the specimen transferring unit approaches the probe to the sample holder, and the gas nozzle supplies the deposition gas so that the micro-specimen is fixed to the sample holder through a fixing deposition film, and the ion beam irradiating optical system irradiates the focused ion beam to the micro-specimen fixed to the sample holder for various procedures.
Abstract:
An apparatus and a method of ion implantation using a rotary scan assembly having an axis of rotation and a periphery. A plurality of substrate holders is distributed about the periphery, and the substrate holders are arranged to hold respective planar substrates. Each planar substrate has a respective geometric center on the periphery. A beam line assembly provides a beam of ions for implantation in the planar substrates on the holders. The beam line assembly is arranged to direct said beam along a final beam path.
Abstract:
A process for manufacturing a TEM-lamella includes mounting (51) a plate shaped substrate having a thickness in a support, manufacturing (53) a first, strip-shaped recess on a first side of the substrate under a first angle to the support by means of a particle beam, and manufacturing (55) a second strip-shaped recess on a second side of the substrate under a second angle to the support by means of a particle beam, such that the first and the second strip-shaped recess mutually form an acute or right angle, and between them form an overlap region of lesser thickness. The lamella has a thicker rim region and a thinner central region, with a first strip-shaped, recess on a first side of the lamella and a second strip-shaped recess on a second side of the lamella, wherein the first and the second strip-shaped recess mutually form an acute or right angle, and between them form an overlap region having a thickness of below 100 nm. An apparatus for executing the process or manufacturing the lamella includes a lamella support pivotable about a transverse axis and a longitudinal axis inclined, to the vertical direction, a device for rotating about the longitudinal axis, and stop means for limiting a tilt of the lamella support about the transverse axis.
Abstract:
A focused ion beam apparatus, including: a sample holder provided with a fixing surface for fixing, via a deposition film, a micro-specimen extracted from a specimen using a method for fabrication by a focused ion beam, in which a width of the fixing surface is smaller than 50 microns; a specimen transferring unit having a probe to which the specimen can be joined through the deposition film, and transferring the micro-specimen extracted from the specimen by the focused ion-beam fabrication method, to the sample holder; and a sample chamber in which the sample, the sample holder and the probe are laid out, wherein, in the sample chamber, the micro-specimen extracted from the specimen by the focused ion-beam fabrication method is fixed to the fixing surface of the sample holder through the deposition film, and the micro-specimen fixed to the fixing surface is fabricated by irradiating the focused ion beam.
Abstract:
An ion implantation apparatus with multiple operating modes is disclosed. The ion implantation apparatus has an ion source and an ion extraction means for extracting a ribbon-shaped ion beam therefrom. The ion implantation apparatus includes a magnetic analyzer for selecting ions with specific mass-to-charge ratio to pass through a mass slit to project onto a substrate. Multipole lenses are provided to control beam uniformity and collimation. A two-path beamline in which a second path incorporates a deceleration or acceleration system incorporating energy filtering is disclosed. Finally, methods of ion implantation are disclosed in which the mode of implantation may be switched from one-dimensional scanning of the target to two-dimensional scanning.
Abstract:
A hydrogen ion implanter for the exfoliation of silicon from silicon wafers uses a large scan wheel carrying 50+ wafers around its periphery and rotating about an axis. In one embodiment, the axis of rotation of the wheel is fixed and a ribbon beam of hydrogen ions is directed down on a peripheral edge of the wheel. The ribbon beam extends over the full radial width of wafers on the wheel. The beam is generated by an ion source providing an extracted ribbon beam having at least 100 mm major cross-sectional diameter. The ribbon beam may be passed through a 90° bending magnet which bends the beam in the plane of the ribbon. The magnet provides intensity correction across the ribbon to compensate for the dependency on the radial distance from the wheel axis of the speed at which parts of the wafers pass through the ribbon beam.
Abstract:
There is provided a mini environment type transfer unit which can efficiently transfer a sample to a critical dimension scanning electron microscope (CD-SEM) even in the case of use of a SMIF pod which can store only one photomask. In addition to a load port, a stocker which can store a plurality of photomasks is provided in the mini environment type transfer unit. A mask storage slot in which a plurality of storage units are stacked is provided in the stocker, and one photomask is stored in each storage unit. A sensor is provided in each storage unit to determine whether or not the photomask is normally stored. Additionally, a sensor is provided in each storage unit to detect whether or not the photomask exists.
Abstract:
A specimen fabrication apparatus, including: an ion beam irradiating optical system to irradiate a sample placed in a chamber, with an ion beam; a specimen holder to mount a specimen separated by the irradiation with the ion beam; a holder cassette to hold the specimen holder; a sample stage to hold the sample and the holder cassette; and a probe to move the specimen to the specimen holder, wherein the holder cassette is transferred to outside of the chamber in a condition of holding the specimen holder with the specimen mounted.
Abstract:
Methods and apparatus for providing and processing serial tissue sections. In one example, an “automatic tape collecting lathe ultramicrotome” (ATLUM) slices a block of tissue sample having various geometries into a continuous ribbon of thin tissue, or multiple thin tissue sections, and disposes the sliced thin tissue on an appropriate substrate to facilitate subsequent imaging of the sliced thin tissue. Closed-loop control of section thickness of the sliced thin tissue sections or ribbons is implemented to produce thinner sliced tissue sections or ribbons and tightly regulate thickness. Thin tissue sections or ribbons may be particularly processed/prepared to facilitate imaging with a scanning electron microscope (SEM). Collected thin tissue sections or ribbons may be used to create UltraThin Section Libraries (UTSLs) that allow for fully automated, time-efficient imaging in the SEM to facilitate expansive tissue studies.