Abstract:
A virtual remote cathode has the position of a space charge cloud associated with it fixed by the geometry of a fixed insulating plate (902). The plate (902) can be made to accurate dimensions and hence the virtual remote cathode to control grid (502) distance can be accurately controlled and will not change as a result of any mechanical, electrical or physical changes in the construction. The fixed insulating plate (902) is located on a surface of the control grid (502) facing the cathode (510).
Abstract:
A virtual remote cathode has the position of a space charge cloud associated with it fixed by the geometry of a fixed insulating plate (902). The plate (902) can be made to accurate dimensions and hence the virtual remote cathode to control grid (502) distance can be accurately controlled and will not change as a result of any mechanical, electrical or physical changes in the construction. The fixed insulating plate (902) is located on a surface of the control grid (502) facing the cathode (510).
Abstract:
Un canon d'électrons (10) élimine les forces non-linéaires de charge spatiale et les forces de focalisation dépendant de la phase qui sont les principales responsables de l'émittance élevée des canons d'électrons conventionnels. Le canon comprend une cavité de résonnance de micro-ondes (15), une cathode (12) montée dans la paroi de la cavité, et un système d'analyse (17) de la force vive. Lorsque l'on fournit une puisance de micro-ondes à la cavité de résonance de micro-ondes, celle-ci soutient un champ électromagnetic ayant une composante électrique à haut gradient dirigée le long d'un axe d'accélération. Une ouverture de sortie (32) est formée dan sla cavité, dans une position telle par rapport à la cathode que les électrons émis sont accélérés le long de l'axe et passent à travers l'ouverture de sortie. La longueur de la cavité est choisie pour que le champ de micro-ondes dans le volume de la cavité puisse accélérer les électrons jusqu'à une énergie d'environ 0,5-1,0 MeV avant qu'ils ne passent à travers l'ouverture, le groupement des électrons est fourni par l'analyseur de force vive. L'énergie d'un électron qui émerge de la cavité est déterminée par la phase du champ de micro-ondes au moment de l'émission de cet électron. On permet aux électrons qui ont une énergie correspondante à la valeur de phase initiale voulue de passer à travers l'analyseur de force vive, en formant ainsi un faisceau d'électrons pré-groupés destinés à être injectés dans un accélérateur linéaire.
Abstract:
Systems and methods in accordance with embodiments of the invention implement enhanced carbon nanotube-based field emitters. In one embodiment, a method of fabricating a structure characterized by a plurality of carbon nanotubes adhered to a substrate includes: growing a plurality of vertically aligned carbon nanotubes to a height of at least approximately 25 μm on a first flat substrate; where the grown plurality of vertically aligned carbon nanotubes define a pattern characterized by at least two regions, each region including at least one carbon nanotube, where the at least two regions are spaced apart by at least 1 μm; affixing a second substrate to the free ends of the plurality of the grown carbon nanotubes without disturbing said pattern; and detaching the first flat substrate from the carbon nanotubes affixed to the second substrate.
Abstract:
Example compact modular electron beam units are provided that can be used to generate electron beams using field emitter elements. A modular electron beam unit may comprise an electron beam source including a base portion, at least one field emitter element coupled to the base portion, the field emitter element including a field emitter tip, at least one gate electrode and a membrane window disposed over the at least one gate electrode.
Abstract:
Methods of marking paper products and marked paper products are provided. Some methods include irradiating the paper product to alter the functionalization of the paper.
Abstract:
본 발명은 전자빔의 에미턴스를 감소시킬 수 있는 전자빔 발생장치에 대한 것이다. 이를 위하여 본 발명에 따른 전자빔 발생장치는, 전자빔이 생성되는 후면부와, 생성된 전자빔이 외부로 배출되도록 전자빔배출홀이 형성된 전면부와, 후면부와 전면부를 연결하는 측면부를 포함하며, 측면부에는 제1홀이 형성되고, 제1홀에 의하여 유발되는 전기장 불균형을 감소시키도록 제1홀과 마주보는 반대편 측면부에 제2홀이 형성된 하우징 및 제1홀을 통하여 하우징 내부로 전자기파를 공급하도록 측면부에 설치되는 웨이브가이드를 포함하며, 하우징 내부로 입사된 레이저에 의하여 전자빔이 생성되고 하우징 내부로 공급된 전자기파에 의하여 전자빔이 가속된다.
Abstract:
A system for generating an electron beam, comprising: a dielectric body; a device for generating an electric field; a source of electrons; and a control unit for controlling the device, wherein the control unit operatively controls such that in a first phase of a cycle, electrons end up from the source on the dielectric surface, and in a second phase of the cycle, electrons leave the dielectric body.
Abstract:
An electron gun (10) as for a cathode ray tube includes a plurality of electrodes biased at different potentials to electrostatically shape and focus the one or more electron beams produced thereby. A dynamic focus grid (G6) is driven by a substantial ac voltage signal at the horizontal line rate, which signal is undesirably coupled through parasitic capacitance to an intermediate grid (G7) located between the dynamic focus grid (G6) and the gun anode (G8). A resistive biasing network includes a high value resistance to divide the anode potential to develop bias potential for the intermediate grid and a capacitance to ac couple the intermediate grip to ground potential. The resistance and/or capacitance are formed in a plural layer ceramic circuit. The ceramic circuit may be located in the tube neck on or with the electron gun.