Abstract:
Described are a method and apparatus for high-speed phase shifting of an optical beam. A transparent plate having regions of different optical thickness is illuminated by an optical beam along a path of incidence that extends through the regions. The transparent plate can be moved or the optical beam can be steered to generate the path of incidence. The optical beam exiting the transparent plate has an instantaneous phase value according to the region in which the optical beam is incident. Advantageously, the phase values are repeatable and stable regardless of the location of incidence of the optical beam within the respective regions, and phase changes at high modulation rates are possible. The method and apparatus can be used to modulate a phase difference of a pair of coherent optical beams such as in an interferometric fringe projection system.
Abstract:
A system is described that combines spectropolarimetry with scatterometry. The system uses an annular mirror and liquid crystal devices to control the angle of the incident light cone, the polarization and wavelength, an imaging setup and one or more video cameras so that spectroseopic-polarimetric-scatterometric images can be grabbed rapidly. The system is also designed to incorporate additional imaging modes such as interference, phase contrast, fluorescence and Raman spectropolarimetric imaging.
Abstract:
A Spectrometer System and a Method for Compensating for Time Periodic Perturbations of an Interferogram generated by the Spectrometer System A spectrometer system (2) comprises a scanning interferometer (4); a drive system (6) mechanically coupled to a movable reflector element (14) of the scanning interferometer (4) and operable to effect reciprocation of the movable reflector element (14)at a plurality, preferably more than two, for example three, different scan speeds; a detector arrangement (8) configured to sample at equidistant time intervals an interferogram formed by the scanning interferometer (2) to generate a sampled interferogram; and a data processor (10) is adapted to acquire a sampled interferogram at each of the plurality of different scan speeds and to perform a relative comparison of the content of the so acquired plurality of sampled interferograms.
Abstract:
A spectral imaging system comprises: a sequential optical system providing a temporal sequence of output light beams describing the scene; a color imager receiving the output light beams and responsively generating, for each output light beam, an image signal that is spatially resolved into a plurality of color channels. The system can also comprise an image processor that collectively process the image signals to construct a spectral image of the scene.
Abstract:
Described are a method and apparatus for high-speed phase shifting of an optical beam. A transparent plate having regions of different optical thickness is illuminated by an optical beam along a path of incidence that extends through the regions. The transparent plate can be moved or the optical beam can be steered to generate the path of incidence. The optical beam exiting the transparent plate has an instantaneous phase value according to the region in which the optical beam is incident. Advantageously, the phase values are repeatable and stable regardless of the location of incidence of the optical beam within the respective regions, and phase changes at high modulation rates are possible. The method and apparatus can be used to modulate a phase difference of a pair of coherent optical beams such as in an interferometric fringe projection system.
Abstract:
A system is described that combines spectropolarimetry with scatterometry. The system uses an annular mirror and liquid crystal devices to control the angle of the incident light cone, the polarization and wavelength, an imaging setup and one or more video cameras so that spectroseopic-polarimetric-scatterometric images can be grabbed rapidly. The system is also designed to incorporate additional imaging modes such as interference, phase contrast, fluorescence and Raman spectropolarimetric imaging.
Abstract:
There is provided a method for analyzing optical properties of an object, including utilizing a light illumination having a plurality of amplitudes, phases and polarizations of a plurality of wavelengths impinging from the object, obtaining modified illuminations corresponding to the light illumination, applying a modification to the light illumination thereby obtaining a modified light illumination, analyzing the modified light illumination, obtaining a plurality of amplitudes, phases and polarizations maps of the plurality of wavelengths, and employing the plurality of amplitudes, phases and polarizations maps for obtaining output representing the object's optical properties. An apparatus for analyzing optical properties of an object is also provided.
Abstract:
A spectral sensor 1A includes a Fabry-Perot interference filter 10 which is provided with an opening 50a to pass light transmitted according to a distance between a first mirror 31 and a second mirror 41 along a facing direction D; a light detector 3 which has a light reception unit 3 a to receive the light having passed through the opening 50a; a wiring substrate 2 on which the light detector 3 is mounted; and a plurality of spacers 4 which support the filter 10 on the wiring substrate 2, such that a second space S2 continuous with a first space S1 in the opening 50a and including the first space S1 when viewed from the facing direction D is formed between the filter 10 and the wiring substrate 2. The light detector 3 is disposed in the second space S2. The light reception unit 3a is disposed in a region corresponding to the first space S1 in the second space S2, when viewed from the facing direction D.