Abstract:
Various embodiments relate to a circuit board, including a base and a heat-conducting layer. The base has a first region and a second region on one side thereof facing the heat-conducting layer, the first region is recessed with respect to the second region, a first insulating layer is accommodated in the first region, a second insulating layer is formed on the second region, and the first insulating layer and the second insulating layer have different thermal conductivities. In addition, various embodiments further relate to an electronic module and an illuminating device including such circuit board. Various embodiments also relate to a method for manufacturing such circuit board.
Abstract:
The invention relates to a thermoelectric generator module with a hot zone (1a) and a cold zone (1b) comprising at least a first metal-ceramic substrate (2), which has a first ceramic layer (6) and at least one structured first metallization (4) applied to the first ceramic layer (6) and is assigned to the hot zone, and at least a second metal-ceramic substrate (4), which has a second ceramic layer (7) and at least one structured second metallization (5) applied to the second ceramic layer and is assigned to the cold zone (1b), and also a number of thermoelectric generator components (N, P) located between the first and second structured metallizations (4, 5) of the metal-ceramic substrates (2, 3). Particularly advantageously, the first metal-ceramic substrate (2), assigned to the hot zone (1a), has at least one layer of steel or high-grade steel (8), wherein the first ceramic layer (6) is arranged between the first structured metallization (4) and the at least one layer of steel or high-grade steel (8). The invention also relates to an associated metal-ceramic substrate and to a method for producing it.
Abstract:
A copper foil composite comprising a copper foil and a resin layer laminated thereon, satisfying an equation 1: (f 3 x t 3 )/(f 2 x t 2 ) => 1 wherein t 2 (mm) is a thickness of the copper foil, f 2 (MPa) is a stress of the copper foil under tensile strain of 4%, t 3 (mm) is a thickness of the resin layer, f 3 (MPa) is a stress of the resin layer under tensile strain of 4%, and an equation 2:1 1 /(F x T) wherein f 1 (N/mm) is 180° peeling strength between the copper foil and the resin layer, F(MPa) is strength of the copper foil composite under tensile strain of 30%, and T (mm) is a thickness of the copper foil composite, wherein a Cr oxide layer is formed at an coating amount of 5 to 100 µg/dm 2 .is formed on a surface of the copper foil on which the resin layer is not laminated.
Abstract:
A light emitting device package, comprising: a base layer (350) having an flat top surface; a light emitting device (360) located directly on the flat top surface of the base layer; an electrical circuit layer (330) located above the flat top surface of the base layer and including at least one end portion placed adjacent to the light emitting device; an electrode layer (322) disposed above a tip portion of each of said end portion of the electrical circuit layer; and a lens (380) extending at least over the light emitting device and the end portion of the electrical circuit layer and covering the electrode layer.