Abstract:
PURPOSE: A manufacturing method of a negative electrode material for is provided to be suitable for a mass production of a nano negative electrode material and to maximize uniform radiation by having a core and shell which contain an acrylonitrile-based copolymer. CONSTITUTION: A manufacturing method of a negative electrode material for secondary batteries comprises: a step of feeding 20-45 weight% of an acrylonitrile-based copolymer as a core material, 10-40 weight% of an acrylonitrile copolymer which is not the same as the core material, 1-35 weight% of a metal or metal oxide or metal sulfide, and 30-65 weight% of a solution mixture in a melt state; a step of forming a core/shell composite by applying voltage to the mixture; and a step of carbonizing and graphitizing the core/shell composite by heat-treating at 700-3000 °C.
Abstract:
PURPOSE: A positive electrode material is provided to reduce the diffusion distance of lithium or sodium ion, to have electrochemical activity which can be used as a positive electrode, and to make ion intercalation and deintercalation of lithium or sodium ion. CONSTITUTION: A positive electrode material has a particle size of 1-100 nm and a voltage flat plane of 3.7-4.0 V by discharging, is coated with carbon to increase conductivity, and comprises a compound indicated in chemical formula A_xMnPO_4F, where A is Li or Na or a mixture thereof, and 0
Abstract:
PURPOSE: A positive electrode for a secondary battery is provided to facilitate detection of voltage change in a specific region by mixing a phosphate-based compound with excellent thermal stability as a main active material and an oxide-based compound as an active material for voltage sensing. CONSTITUTION: A positive electrode for a secondary battery comprises a phosphate based active material represented by chemical formula 1: Li_(1+a)Fe_(1-x)M_x(PO_(4-b))X_b and an oxide based active material represented by chemical formula 2: Li_(1+a)(Ni_xCo_yA_z)O_(2-b)X_b. In chemical formula 1, -0.3
Abstract translation:目的:提供一种用于二次电池的正极,以便通过混合具有优良热稳定性的磷酸盐基化合物作为主要活性材料和基于氧化物的化合物作为电压感测的活性材料来检测特定区域的电压变化 。 构成:二次电池用正极包含由化学式1表示的磷酸酯类活性物质:Li(1 + a)Fe_(1-x)M_x(PO_(4-b))X_b,表示氧化物系活性物质 化学式2:Li(1 + a)(Ni_xCo_yA_z)O_(2-b)X_b。 在化学式1中,-0.3 <= a <= 0.3,0 <= b <= 0.5和0 <= x <= 1,M是Ni,Co,Mn或Mg,x是F,S或N. 化学式2,-0.5 <= a <= 0.5,0 <= b <= 0.3,0 <= x <= 0.8,0 <= y <= 1.0和0 <= z <= 0.7,A是Al或Mn ,并且X是F,S或N. [附图标记](AA)电压感测区域; (BB)充电; (CC)氧化物类活性物质; (DD)0重量%; (EE)2重量%; (FF)5重量%; (GG)10重量% (HH)放电
Abstract:
PURPOSE: A process for manufacturing a negative electrode material for a lithium secondary battery is provided to manufacture various phosphate-based negative electrode materials without thermal process of high temperature and to reduce the time required for whole process. CONSTITUTION: A process for manufacturing a negative electrode material for a lithium secondary battery includes the steps of: mixing transition metal compounds dissolved in distilled water with poly acid phosphate-based compounds to prepare a mixed solution; stirring the mixed solution to prepare a precipitate by a co-precipitation method; drying the precipitate to a temperature of 50-80 °C; and heat-treating the dried material at a temperature of 300-500 °C.
Abstract:
PURPOSE: A battery pack is provided to automatically secure a cooling channel by windows and groove portions of a cell case without the interval between cell assemblies when modularize the cell assemblies through lamination. CONSTITUTION: A battery pack has laminated cell assemblies(100). In the cell assembly, a window(111a) is formed so that unit cells(120) are exposed at both sides of a cell case(110); a groove portion(111c) is formed at both ends of the cell case so that the window is communicated with the laminated cell assembly; and a cooling channel is formed between the window and the groove portion.