Abstract:
Multiple bonding layer schemes that temporarily join semiconductor substrates are provided. In the inventive bonding scheme, at least one of the layers is directly in contact with the semiconductor substrate and at least two layers within the scheme are in direct contact with one another. The present invention provides several processing options as the different layers within the multilayer structure perform specific functions. More importantly, it will improve performance of the thin-wafer handling solution by providing higher thermal stability, greater compatibility with harsh backside processing steps, protection of bumps on the front side of the wafer by encapsulation, lower stress in the debonding step, and fewer defects on the front side.
Abstract:
Scratch-resistant coatings for protecting front-side microelectromechanical and semiconductor device features during backside processing are provided, along with methods of using the same. The coatings are non-photosensitive, removable, and tolerate high processing temperatures. These coatings also eliminate the need for a separate etch stop layer in the device design. The coatings are formed from a composition comprising a component dissolved or dispersed in a solvent system. The component is selected from the group consisting of styrene-acrylonitrile copolymers and aromatic sulfone polymers.
Abstract:
Anti-reflective compositions and methods of using those compositions with low dielectric constant materials are provided. In one embodiment, the compositions include polymers comprising recurring monomers having unreacted epoxide groups. In another embodiment, the polymers further comprise recurring monomers comprising epoxide rings reacted with a light attenuating compound so as to open the ring. The compositions can be applied to dielectric layers so as to minimize or prevent reflection during the dual damascene process while simultaneously blocking via or photoresist poisoning which commonly occurs when organic anti-reflective coatings are applied to low dielectric constant layers.
Abstract:
An improved light attenuating compound for use in the production of microdevices is provided. Broadly, the light attenuating compound is non-aromatic and can be directly incorporated (either physically or chemically) into photolithographic compositions such as bottom anti-reflective coatings (BARC) and contact or via hole fill materials. The preferred non-aromatic compounds of the invention are conjugated aliphatic and alicyclic compounds which greatly enhance the plasma etch rate of the composition. Furthermore, the light attenuating compounds are useful for absorbing light at shorter wavelengths. In one embodiment, the inventive compounds can be polymerized so as to serve as both the polymer binder of the composition as well as the light absorbing constituent.
Abstract:
Radiation-sensitive sol-gel compositions are provided, along with methods of forming microelectronic structures and the structures thus formed. The compositions comprise a sol-gel compound and a base generator dispersed or dissolved in a solvent system. The sol-gel compound comprises recurring monomeric units comprising silicon with crosslinkable moieties bonded to the silicon. Upon exposure to radiation, the base generator generates a strong base, which crosslinks the sol-gel compound in the compositions to yield a crosslinked layer that is insoluble in developers or solvents. The unexposed portions of the layer can be removed to yield a patterned sol-gel layer. The invention can be used to form patterns from sol-gel materials comprising features having feature sizes of less than about 1 m.
Abstract:
Anti-reflective compositions and methods of using those compositions with low dielectric constant materials are provided. In one embodiment, the compositions include polymers comprising recurring monomers having unreacted epoxide groups. In another embodiment, the polymers further comprise recurring monomers comprising epoxide rings reacted with a light attenuating compound so as to open the ring. The compositions can be applied to dielectric layers so as to minimize or prevent reflection during the dual damascene process while simultaneously blocking via or photoresist poisoning which commonly occurs when organic anti-reflective coatings are applied to low dielectric constant layers.
Abstract:
Scratch-resistant coatings for protecting front-side microelectromechanical and semiconductor device features during backside processing are provided, along with methods of using the same. The coatings are non-photosensitive, removable, and tolerate high processing temperatures. These coatings also eliminate the need for a separate etch stop layer in the device design. The coatings are formed from a composition comprising a component dissolved or dispersed in a solvent system. The component is selected from the group consisting of styrene-acrylonitrile copolymers and aromatic sulfone polymers.
Abstract:
New protective coating layers for use in wet etch processes during the production of semiconductor and MEMS devices are provided. The layers include a primer layer, a first protective layer, and an optional second protective layer. The primer layer preferably comprises an organo silane compound in a solvent system. The first protective layer includes thermoplastic copolymers prepared from styrene, acrylonitrile, and compatible compounds such as monomers, oligomers, and polymers comprising epoxy groups; poly(styrene-co-allyl alcohol); and mixtures thereof. The second protective layer comprises a highly halogenated polymer such as a chlorinated polymer which may or may not be crosslinked upon heating.
Abstract:
The invention broadly relates to release layer compositions that enable thin wafer handling during microelectronics manufacturing. Preferred release layers are formed from compositions comprising a polyamic acid or polyimide dissolved or dispersed in a solvent system, followed by curing and/or solvent removal at about 250°C to about 350°C for less than about 10 minutes, yielding a thin film. This process forms the release compositions into polyimide release layers that can be used in temporary bonding processes, and laser debonded after the desired processing has been carried out.