Abstract:
A semiconductor memory device (100), in accordance with the present invention, includes a substrate having a major surface including an array region (102) and a support region (104). The array region includes memory cell structures (106) having a first height above the major surface of the substrate. The support area includes dummy structures (119) formed therein having a second height above the major surface. A dielectric layer (118) is formed over the memory cell structures in the array region and the dummy structures in the support region such that a top surface (122) of the dielectric layer is substantially planar wherein topographical features are substantially eliminated on the dielectric layer across the array region and the support region.
Abstract:
A method for clearing an isolation collar (5) from a first interior surface of a deep trench at a location above a storage capacitor while leaving the isolation collar at other surfaces of the deep trench. A insulating material is deposited above a node conductor (3) of the storage capacitor. A layer of silicon (9) is deposited over the barrier material. Dopant ions are implanted at an angle (11) into the layer of deposited silicon within the deep trench, thereby leaving the deposited silicon unimplanted along one side of the deep trench. The unimplanted silicon is etched. The isolation collar is removed in locations previously covered by the unimplanted silicon, leaving the isolation collar in locations covered by the implanted silicon.
Abstract:
An integrated circuit is provided which includes a memory (100) having multiple ports per memory cell for accessing a data bit with each of a plurality of the memory cells. Such memory includes an array of memory cells in which each memory cell includes a plural of capacitors (102) connected together as a unitary source of capacitance (S). A first access transistor (104) is coupled between a firs one of the plurality of capacitors and a first bitline (RBL) and a second access transistor (106) is coupled between a second one of th plurality of capacitors and a second bitline (WBL) In each memory cell, a gate of the first access transistor (104) is connected to a fi wordline (RWL) and a gate of the second access transistor (106) is connected to a second wordline (WWL)
Abstract:
A DRAM cell and method of fabrication are provided that eliminate critical photolithography fabrication steps by merging stacked capacitor formation with electrical contacts. The a single lithography step can be used to form the electrical contacts (28) because the stacked capacitors (46,48,50) are co-planar with the bit lines (36) and the stacked capacitors are located in the insulating material provided between the bit lines. Unlike conventional capacitor-over-bit line (COB) DRAM cells, this capacitor-beside-bit line DRAM cell eliminates the need to dedicate contacts to the capacitor, making it possible to achieve higher capacitance with lower global topography.
Abstract:
A process of forming a hybrid memory cell which is scalable to a minimum feature size, F, of about 60 nm at an operating voltage of Vblh of about 1.5 V and substantially free of floating-well effects.
Abstract:
PROBLEM TO BE SOLVED: To provide an SRAM cell design capable of simultaneously attaining high performance, low power, and small chip size by using only vertical MOSFET device including a peripheral (transmission) gate. SOLUTION: A method for forming a SRAM cell device comprises the steps of forming a pass gate FET transistor in a silicon layer formed on a flat insulating material and a parallel island, and further forming a pair of vertical pulldown FET transistors having a first common body and a first common source region. The method further forms a pulldown separation space for dividing an upper layer of a pullup and pulldown drain region of a pair of vertical pulldown FET transistor in two by etching through the upper diffusion between cross-linked inverter FET transistors, and the separation space reaches the common boby layer. The method further comprises the steps of forming a pair of vertical pullup FET transistor having a second common body and a second common drain, and connecting the FET transistor so as to form a SRAM cell. COPYRIGHT: (C)2004,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To provide a MOSFET(metal oxide semiconductor field effect transistor) and a method for manufacturing the MOSFET capable of eliminating the overlap of a gate dielectric and a source/drain region with high reliability. SOLUTION: This method for manufacturing a MOSFET comprises the process of patterning a gate laminate constituted of a gate dielectric 20 arid a gate conductor 30 formed on a substrate 10, and the process of modifying the gate dielectric 20 beneath the gate dielectric 30 so that the gate dielectric 20 can have a central portion and a modified dielectric region 70 adjacent to the central portion. The modified dielectric region 70 has a lower dielectric constant than that of the gate dielectric 20, and the central portion is shorter than the gate conductor 30. COPYRIGHT: (C)2003,JPO
Abstract:
PROBLEM TO BE SOLVED: To obtain a vertical DRAM having a self-aligned word line conductor on the sidewall of a trench by forming a word line conductor having a sidewall aligned with the sidewall of the trench. SOLUTION: A pad nitride is removed selectively depending on the oxide 240 in an STI region 228. A screen oxide is then grown and array region p-well implantation is carried out and an N+ dopant is implanted in order to form a second diffusion region 210. Subsequently, source and drain implantation is carried out in a support region in order to form a diffusion region 288 and an oxide 242 is formed on the sidewalls 219, 233 of a word line conductor 218, 232 and on the sidewall of a support gate. Finally, a bit line conductor 244 of polysilicon is deposited for planarization. Since word line resistance is decreased, a DRAM device having improved performance can be obtained.
Abstract:
PROBLEM TO BE SOLVED: To prevent resistance of an embedded strap of a DRAM cell from changing by the overlapping manner of a deep trench and an active region. SOLUTION: This semiconductor device contains a semiconductor substrate. At least a pair of deep trenches are formed in the substrate. A collar is formed in at least a part of the sidewall of each of the deep trenches. The inside of each of the deep trenches is filled with a trench filler 44. An embedded strap 46 is formed over the whole of each of the deep trenches and covers the upper surfaces of the trench filler 44 and the collar. An insulating region is formed between a a pair of the deep trenches. A trench upper part dielectric region 52 formed in the deep trench, so as to overlap with the embedded strap 46 of each of the deep trenches.
Abstract:
PROBLEM TO BE SOLVED: To maintain an appropriate height of a lower part electrode while the surface region of the lower part electrode for a stacked capacity is improved, by forming a first electrode electrically combined to a conductive access path and then forming a second electrode on a dialectics layer formed on the first electrode. SOLUTION: A tapered surface 122 in a trench 116 is formed as a conical part in the trench 116. A lower part electrode (first electrode) 124 is formed on the upper surface comprising a side wall 118 (and the tapered surface 122) by deposition of a metal layer 126, for example, such noble metal as platinum (Pt). A high dielectric constant layer 134 is formed on the metal layer 126. The metal layer 126 forms a lower part electrode of a stacked capacitor. An upper part electrode (second electrode) 136 is formed by deposition of a conductive material above the high dielectric constant layer 134 in the trench 116. The upper part electrode 136 is prefered to be formed of platinum, while such a conductive material as iridium(Ir), for example, may be used.