Abstract:
A wafer scanning system includes imaging collection optics to reduce the effective spot size. Smaller spot size decreases the number of photons scattered by the surface proportionally to the area of the spot. Air scatter is also reduced. TDI is used to produce a wafer image based on a plurality of image signals integrated over the direction of linear motion of the wafer. An illumination system floods the wafer with light, and the task of creating the spot is allocated to the imaging collection optics.
Abstract:
A curved mirrored surface (78) is used to collect radiation scattered by a sample surface (76a) and originating from a normal illumination beam (70) and an oblique illumination beam (90). The collected radiation is focused to a detector (80). Scattered radiation originating from the normal and oblique illumination beams may be distinguished by employing radiation at two different wavelengths, by intentionally introducing an offset between the spots illuminated by the two beams or by switching the normal and oblique illumination beams (70, 90) on and off alternately. Beam position error caused by change in sample height may be corrected by detecting specular reflection of an oblique illumination beam and changing the direction of illumination in response thereto. Butterfly-shaped spatial filters may be used in conjunction with curved mirror radiation collectors 78 to restrict detection to certain azimuthal angles.
Abstract:
A cylindrical mirror or lens is used to focus an input collimated beam of light onto a line on the surface to be inspected, where the line is substantially in the plane of incidence of the focused beam. An image of the beam is projected onto an array of charge-coupled devices parallel to the line for detecting anomalies and/or features of the surface, where the array is outside the plane of incidence of the focused beam.
Abstract:
A dark field inspection system that minimizes the speckle noise due to sample surface roughness can include a plurality of beam shaping paths for generating a composite, focused illumination line on a wafer. Each beam shaping path can illuminate the wafer at an oblique angle. The plurality of beam shaping paths can form a ring illumination. This ring illumination can reduce the speckle effect, thereby improving SNR. An objective lens can capture scattered light from the wafer and an imaging sensor can receive an output of the objective lens. Because the wafer illumination occurs at oblique angles, the objective lens can have a high NA, thereby improving optical resolution of the imaging sensor, and the resulting signal level.
Abstract:
An apparatus for illuminating a target surface, the apparatus having a plurality of LED arrays, where each of the arrays has a plurality of individually addressable LEDs, and where at least one of the arrays is disposed at an angle of between about forty-five degrees and about ninety degrees relative to the target surface, where all of the arrays supply light into a light pipe, the light pipe having interior walls made of a reflective material, where light exiting the light pipe illuminates the target surface, and a controller for adjusting an intensity of the individually addressable light sources.
Abstract:
A spectrometer having an electron beam generator for generating an electron beam that is directed at a sample. An electron beam positioner directs the electron beam onto a position of the sample, and thereby produces a secondary emitted stream from the sample, where the secondary emitted stream includes at least one of electrons and x-rays. An secondary emitted stream positioner positions the secondary emitted stream onto a detector array, which receives the secondary emitted stream and detects both the amounts and the received positions of the secondary emitted stream. A modulator modulates the electron beam that is directed onto the sample, and thereby sweeps the electron beam between a first position and a second position on the sample. An extractor is in signal communication with both the modulator and the detector array.
Abstract:
A multi-spot scanning technique using a spot array having a predetermined gap between spots can advantageously provide scalability to a large number of spots as well as the elimination of cross-talk between channels. The multi-spot scanning technique can select a number of spots for the spot array (1D or 2D), determine a separation between the spots to minimize crosstalk, and perform a scan on a wafer using the spot array and a full field of view (FOV). Performing the scan includes performing a plurality of scan line cycles, wherein each scan line cycle can fill in gaps left by previous scan line cycles. This 'delay and fill' scan allows large spacing between spots, thereby eliminating cross-talk at the detector plane. In one embodiment, the scan is begun and ended outside a desired scan area on the wafer to ensure full scan coverage.
Abstract:
Disclosed is a method of obtaining information in-situ regarding a film of a sample using an eddy probe during a process for removing the film. The eddy probe has at least one sensing coil. An AC voltage is applied to the sensing coil(s) of the eddy probe. One or more first signals are measured in the sensing coil(s) of the eddy probe when the sensing coil(s) are positioned proximate the film of the sample. One or more second signals are measured in the sensing coil(s) of the eddy probe when the sensing coil(s) are positioned proximate to a reference material having a fixed composition and/or distance from the sensing coil. The first signals are calibrated based on the second signals so that undesired gain and/or phase changes within the first signals are corrected. A property value of the film is determined based on the calibrated first signals. An apparatus for performing the above described method is also disclosed. Additionally, a chemical mechanical polishing (CMP) system for polishing a sample with a polishing agent and monitoring the sample is disclosed. The CMP system includes a polishing table, a sample carrier arranged to hold the sample over the polishing table, and an eddy probe.