Abstract:
High quality epitaxial layers of metallic oxide materials can be grown overlying large silicon wafers by first growing an accommodating buffer layer on a silicon wafer. The accommodating buffer layer is a layer of monocrystalline oxide spaced apart from the silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer.
Abstract:
High quality epitaxial layers of monocrystalline materials can be grown overlying monocrystalline substrates (22) such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. An accommodating buffer layer (24) comprises a layer of monocrystalline oxide spaced apart from the silicon wafer byan amorphous interface layer (28) of silicon oxide. The amorphous interface layer (28) dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer (24). The accommodating buffer layer (24) is substantially lattice matched to both the underlying silicon wafer (22) and the overlying monocrystalline material layer (26). Any lattice mismatch between the accommodating buffer layer (24) and the underlying silicon substrate (22) is taken care of by the amorphous interface layer (28). In addition, formation of a compliant substrate may include utilizing surfactant enhanced epitaxy, epitaxial growth of single crystal silicon onto single crystal oxide, and epitaxial growth of Zintl phase materials.
Abstract:
High quality epitaxial layers of compound semiconductor materials (108) can be grown overlying large silicon wafers by first growing an accommodating buffer layer (104) on a silicon wafer (102). The accommodating buffer layer is a layer of monocrystalline oxide spaced apart from the silicon wafer by an amorphous interface layer (112) of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer. Optical structures such as visible light lasers and light emitting diodes can be grown on the high quality epitaxial compound semiconductor material to create highly reliable devices having reduced costs.
Abstract:
Multijunction solar cell structures (100) including high quality epitaxial layers of monocrystalline semiconductor materials that are grown overlying monocrystalline substrates (102) such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers are disclosed. One way to achieve the formation of a compliant substrate includes first growing an accommodating buffer layer (104) on a silicon wafer. The accommodating buffer (104) layer is a layer of monocrystalline material spaced apart from the silicon wafer by an amorphous interface layer (112) of silicon oxide. The amorphous interface layer (112) dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. Multiple and varied accommodating buffer layers can be used to achieve the monolithic integration of multiple non-lattice matched solar cell junctions.
Abstract:
A structure and method for forming a high dielectric constant device structure includes a monocrystalline semiconductor substrate and an insulating layer formed of an epitaxially grown oxide such as (A)y(TixM1-x)1-yO3, wherein A is an alkaline earth metal or a combination of alkaline earth metals and M is a metallic or semi-metallic element. Semiconductor devices formed in accordance with the present invention exhibit low leakage current density.
Abstract:
A semiconductor structure (400) and method for forming a semiconductor structure including a high dielectric constant material includes a monocrystalline semiconductor substrate (401), one or more layers of a stoichiometric monocrystalline, high dielectric constant material (404), and one or more layers of a non-stoichiometric, high dielectric constant material (405). The high dielectric constant material may include a monocrystalline alkali earth metal titanate, such as (Ba,Sr)TiO3. Semiconductor devices fabricated in accordance with the present invention exhibit reduced leakage current density.
Abstract:
High quality epitaxial layers of stable oxides can be grown overlying compound semiconductor material substrates. The compound semiconductor substrate (101) may be terminated with an atomic layer of gallium, for example (for a gallium arsenide substrate), forming a terminating layer (102). The oxide layer (105) is a layer of monocrystalline alkali earth oxide spaced apart from the compound semiconductor wafer by an oxide template layer (103) overlying the compound semiconductor substrate via the terminating layer. The oxide template layer (103) dissipates strain and permits the growth of a high quality monocrystalline oxide layer. Any lattice mismatch between the monocrystalline oxide layer and the underlying compound semiconductor substrate is decreased by the oxide template layer. The monocrystalline oxide layers can be used as gate dielectric in insulated gate field effect transistors.
Abstract:
High quality epitaxial layers of compound semiconductor materials can be grown overlying large silicon wafers by first growing an accommodating buffer layer on a silicon wafer. The accommodating buffer layer is a layer of monocrystalline oxide spaced apart from the silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying monocrystalline compound semiconductor layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer.
Abstract:
High quality epitaxial layers of compound semiconductor materials can be grown overlying large silicon wafers by first growing an accommodating buffer layer on a silicon wafer. The accommodating buffer layer is a layer of monocrystalline oxide spaced apart from the silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying monocrystalline compound semiconductor layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer.