Abstract:
The micro-electro-mechanical device is formed by a fixed structure (64) having a cavity (63); a tiltable structure (62) elastically suspended over the cavity (63), having a main extension in a tiltable plane (AB), and rotatable about a rotation axis (B) parallel to the tiltable plane (AB); and a piezoelectric actuation structure (70) including at least a first and a second driving arm (72A, 72B), the first and the second driving arms carrying respective piezoelectric material regions (73) and extending on opposite sides of the rotation axis (B). The first and the second driving arms (72A, 72B) are rigidly coupled to the fixed structure (64) and are elastically coupled to the tiltable structure (62). A stop structure (83A-83D) limits movements of the tiltable structure (62) with respect to the actuation structure (70) along a planar direction (A) perpendicular to the rotation axis (B). The stop structure has a first planar stop element (83A) formed between the first driving arm (72A) and the tiltable structure (62) and a second planar stop element (83B) formed between the second driving arm (72B) and the tiltable structure.
Abstract:
For manufacturing an optical microelectromechanical device (70), a first wafer (90) of semiconductor material having a first surface (100A) and a second surface (100B) is machined to form a suspended mirror structure (86), a fixed structure (74) surrounding the suspended mirror structure (86), elastic supporting elements (84A-84D) which extend between the fixed structure and the suspended mirror structure, and an actuation structure (83), coupled to the suspended mirror structure. A work wafer (10') is machined separately to form a second wafer (15) having a chamber (104) delimited by a bottom wall having a through opening (103). The second wafer is bonded to the first surface (100A) of the first wafer (90) in such a way that the chamber (104) overlies the actuation structure (83) and the through opening (103) is aligned to the suspended mirror structure (86). Furthermore, a third wafer (98) is bonded to the second surface (100B) of the first wafer to form a composite wafer device (112). The composite wafer device (112) is then diced to form an optical microelectromechanical device (70).
Abstract:
A micro-electro-mechanical device (50), wherein a platform (52) is formed in a top substrate and is configured to turn through a rotation angle (θ). The platform has a slit (70) and faces a cavity (53). A plurality of integrated photodetectors (70) is formed in a bottom substrate so as to detect the light through the slit and generate signals correlated to the light through the slit. The area of the slit varies with the rotation angle of the platform and causes diffraction, more or less marked as a function of the angle. The difference between the signals of two photodetectors arranged at different positions with respect to the slit yields the angle.
Abstract:
A micro-electro-mechanical device (50), wherein a platform (52) is formed in a top substrate and is configured to turn through a rotation angle (θ). The platform has a slit (70) and faces a cavity (53). A plurality of integrated photodetectors (70) is formed in a bottom substrate so as to detect the light through the slit and generate signals correlated to the light through the slit. The area of the slit varies with the rotation angle of the platform and causes diffraction, more or less marked as a function of the angle. The difference between the signals of two photodetectors arranged at different positions with respect to the slit yields the angle.
Abstract:
A MEMS device (40) has a platform (45) carried by a frame (48) via elastic connection elements (46) configured to enable rotation of the platform about a first axis (A). A bearing structure (41) supports the frame (48) through first and second elastic suspension arms configured to enable rotation of the frame (48) about a second axis (B), transverse to the first axis (A). The elastic suspension arms (49) are anchored to the bearing structure (41) through respective anchorage portions (50) arranged offset with respect to the second axis (B). A stress sensor (51, 52) is formed by a first and a second sensor element (51, 52), respectively arranged on the first and second suspension arms (49), in proximity of the anchorage portions, on a same side of the second axis (B), in a symmetrical position with respect to the first axis (A).
Abstract:
A reflector micromechanical structure (20) has: a frame (2), which defines, inside it, a window (5) and is elastically connected to an anchorage structure (7), fixed with respect to a substrate (8), by first elastic elements (6); an actuation structure (10) operatively coupled to the frame (2) for generating a first actuation movement; a mobile mass (4) arranged within the window (5) and elastically coupled to the frame (2) by second elastic elements (9), of a torsional type, such that the mobile mass (4) is rigidly coupled to the frame (2) in the first actuation movement and further defining a second actuation axis (y), of a torsional type, for the same mobile mass (4). A mass distribution is associated to the mobile mass (4) such as to generate, by the inertial effect, as a function of the first actuation movement, a second actuation movement, of rotation of the mobile mass (4) about the second actuation axis (y).
Abstract:
A microelectromechanical mirror device (3) has a first mirror tiltable structure (3a, 10) provided in a first die (11) of semiconductor material having a main extension in a horizontal plane (xy) defined by a first (x) and by a second (y) horizontal axes. The first mirror tiltable structure (3a, 10) has: a fixed structure (14) defining a frame (14') which delimits a cavity (13); a tiltable element (12) carrying a reflecting region (12'), elastically suspended above the cavity (13) and having a first (A) and a second (B) median axes of symmetry, elastically coupled to the frame (14') by a first (15a) and a second (15b) coupling structures, on opposite sides of the second axis (B); and a driving structure (20), coupled to the tiltable element (12) to cause it to rotate around the first axis (A) with a resonance movement. The first mirror tiltable structure (3a, 10) is asymmetrical with respect to the second axis (B) and has, along the first horizontal axis (x): a first extension dimension (d1), on a first side of the second axis (B); and a second extension dimension (d2), greater than the first extension dimension (d1), on a second side of the second axis (B), opposite to the first side.
Abstract:
A microelectromechanical mirror device (1) has a fixed structure (4) defining an external frame (4') which delimits a cavity (3); an internal frame (7), arranged above the cavity and defining a window (8); a tiltable structure (2) with a reflective surface (2'), arranged in the window and elastically coupled to the internal frame by a first and a second coupling elastic elements (9a, 9b); an actuation structure (10), coupled to the internal frame to cause the rotation, in a decoupled manner, of the tiltable structure around a first and a second rotation axis (SA, FA). The actuation structure has a first pair of driving arms (12a, 12b), elastically coupled to the internal frame and carrying piezoelectric material regions to cause a rotation of the tiltable structure around the first rotation axis; and a further pair of driving arms (12e, 12f), carrying piezoelectric material regions to cause a rotation of the tiltable structure around the second rotation axis and interposed between the fixed structure and the internal frame, to which they are elastically coupled by a first and a second suspension elastic elements (14e, 14f), yielding to torsion around the first rotation axis.
Abstract:
A microelectromechanical mirror device (1; 100) has, in a die (1') of semiconductor material: a fixed structure (4) defining a cavity (3); a tiltable structure (2) carrying a reflecting region (2'), elastically suspended above the cavity; at least a first pair of driving arms (12a, 12b), coupled to the tiltable structure and carrying respective piezoelectric material regions (13) which may be biased to cause a rotation thereof around at least one rotation axis; elastic suspension elements (6a, 6b), which couple the tiltable structure elastically to the fixed structure, being stiff with respect to movements out of the horizontal plane and yielding with respect to torsion; and a piezoresistive sensor (20), configured to provide a detection signal (S r ) indicative of the rotation of the tiltable structure. At least one test structure (30, 30') is integrated in the die to provide a calibration signal (S c ) indicative of a sensitivity variation of the piezoresistive sensor (20), in order to calibrate the detection signal (S r ).
Abstract:
A process for manufacturing a microelectromechanical mirror device includes: in a semiconductor wafer (50), defining a support frame (2), a plate (5) connected to the support frame (2) so as to be orientable around at least one rotation axis (X) and cantilever structures (9) extending from the support frame (2) and coupled to the plate (5) so that bending of the cantilever structures (9) causes rotations of the plate (5) around the at least one rotation axis (X); forming piezoelectric actuators (10) on the cantilever structures (9); forming pads (12) on the support frame (2); and forming spacer structures (25) protruding from the support frame (2) more than both the pads (12) and the stacks of layers (15, 16, 17, 20, 21, 22) forming the piezoelectric actuators (10).