Abstract:
An integrated semiconductor chemical microreactor (21) for real-time polymerase chain reaction (PCR) monitoring, has a monolithic body (2) of semiconductor material; a number of buried channels (3) formed in the monolithic body (2); an inlet trench (14) and an outlet trench (15) for each buried channel (3); and a monitoring trench (16) for each buried channel (3), extending between the inlet and outlet trenches (14, 15) thereof from the top surface (4) of the monolithic body (2) to the respective buried channel (3). Real-time PCR monitoring is carried out by channeling light beams into the buried channels (3), whereby the light beams impinge on the fluid therein, and by collecting and processing light beams coming out from the monitoring trenches (16) and emitted by the fluid within the buried channels (3).
Abstract:
A process for bonding two distinct substrates that integrate microsystems, comprising the steps of: making micro-integrated devices in at least one of the two substrates using microelectronic processing techniques; and bonding said substrates. The bonding is performed by making on a first substrate (33) bonding regions (32) of deformable material and by pressing said substrates one against another so as to deform the bonding regions and to cause them to react chemically with the second substrate (34). The bonding regions are preferably formed by a thick layer (30) made of a material chosen from among aluminium, copper and nickel, covered by a thin layer (31) made of a material chosen from between palladium and platinum. Spacing regions (25') guarantee exact spacing between the two wafers.
Abstract:
An integrated device (40) forming a microfluid system includes a substrate (41) of semiconductor material and a lid element (56) forming a channel (55) filled with a liquid. A heating element (51) is carried by the substrate and faces the channel so as to heat the liquid and generate a gas bubble, when activated. The substrate (41) houses a cavity (42) arranged on the opposite side of the heating element (51; 66) with respect to the channel (55) in order to reduce thermal dispersion of the heating element (51) towards the substrate (41). The heating element includes a resistive region (45) coated, on the side facing the channel (55), by a protective region (49, 50) and, on the side facing the cavity (42), by an insulating layer (44).
Abstract:
To reduce the risk of breakage of the moving parts of an integrated microstructure during manufacture steps causing mechanical stresses to the moving parts, a temporary immobilization and support structure (20; 30; 40) is formed thereby a moving region (12, 13) of the microstructure is temporarily integral with the fixed region (10, 11). The temporary structure (20; 30; 40) is removed at the end of the assembly operations by non-mechanical removal methods. According to one solution, the temporary structure is formed by a fusible element (20) removed by melting or evaporation, by applying a sufficient quantity of energy thereto. Alternatively, a structural region (30) of polymer material is formed in the trench (15) separating the moving part from the fixed part, or an adhesive material layer (40) sensitive to ultraviolet radiation is applied.
Abstract:
The process comprises the steps of: forming a through hole (12) from the back of a semiconductor material body (1); forming a hole insulating layer (15) of electrically isolating material laterally covering the walls of the through hole; forming a through contact region (16) of conductive material laterally covering the hole insulating layer inside the hole and having at least one portion (21) extending on top of the lower surface (10) of the body (1); forming a protective layer (22) covering the through contact region; and forming a connection structure (25) extending on top of the upper surface (5) of the body (1) between and in electrical contact with the through contact region (16) and the electronic component (3).
Abstract:
A fluidic cartridge (35; 135) for detecting chemicals, formed by a casing (40; 140), hermetically housing an integrated device (20) having a plurality of detecting regions (22) to bind with target chemicals; part of a supporting element (41; 141), bearing the integrated device; a reaction chamber (65; 165), facing the detecting regions (22); a sample feeding hole (50, 51; 150) and a washing feeding hole (52; 152), self-sealingly closed; fluidic paths (63, 64, 70, 71; 163, 164, 170, 171), which connect the sample feeding and washing feeding holes (50-52; 150, 152) to the reaction chamber (65; 165); and a waste reservoir (80; 180), which may be fluidically connected to the reaction chamber by valve elements (82, 76; 182, 176) that may be controlled from outside. The integrated device is moreover connected to an interface unit (42) carried by the supporting element (41; 141), electrically connected to the integrated device and including at least one signal processing stage and external contact regions (75; 175).