Abstract:
The process comprises the steps of forming, on top of a semiconductor material wafer (10), a holed mask (16) having a lattice structure and comprising a plurality of openings (18) each having a substantially square shape and a side with an inclination of 45° with respect to the flat (110) of the wafer; carrying out an anisotropic etch in TMAH of the wafer (10), using said holed mask (16), thus forming a cavity (20), the cross section of which has the shape of an upside-down isosceles trapezium; and carrying out a chemical vapour deposition (CVD) using TEOS, thus forming a TEOS layer (24) which completely closes the openings of the holed mask (16) and defines a diaphragm (26) overlying the cavity (20) and on which a suspended integrated structure can subsequently be manufactured.
Abstract:
A monocrystalline silicon substrate (2) is subjected to the following operations:
implantation of doping impurities in a high concentration to form a planar region (42) of a first type (n), selective anisotropic etching in order to hollow out trenches to a depth greater than the depth of the planar region (42), oxidation of the silicon inside the trenches starting a certain distance from the surface of the substrate, until a silicon dioxide plaque (22) is formed, surmounted by residues of strongly-doped silicon, epitaxial growth between and on top of the silicon residues to close the trenches and to bring about a redistribution of the doping impurities into the silicon grown to produce a buried region (42') with low resistivity in an epitaxial layer (23) of high resistivity.
Abstract:
The process comprises the steps of forming, in a wafer (1) of monocrystalline semiconductor material, trenches (45) extending between, and delimiting laterally, protruding regions (48); forming masking regions (55, 56), implanted with nitrogen ions, the masking regions surrounding completely the tips of the protruding regions (48); and forming retarding regions (57) on the bottom of the trenches (45), wherein nitrogen is implanted at a lower dose than the masking regions. A thermal oxidation is then carried out and starts at the bottom portion of the protruding regions (48) and then proceeds downwards; thereby, a continuous region (65) of buried oxide is formed and is overlaid by non-oxidized regions (60) corresponding to the tips of the protruding regions and forming nucleus regions for a subsequent epitaxial growth. The masking regions (55, 56) and the retarding regions (57) are formed through two sucdessive implants, including an angle implant, wherein the protruding regions (48) shield the bottom portions of the adjacent protruding regions (48), as well as the bottom of the trenches (45), and a is made perpendicularly to the wafer (1).
Abstract:
The method allows formation of buried cavities in a wafer (25) of monocrystalline semiconductor material. Initially, at least one cavity (21) is formed in a substrate (10) of monocrystalline semiconductor material, by timed TMAH etching silicon, then the cavity is covered with a material inhibiting epitaxial growth (22); finally, a monocrystalline epitaxial layer (26) is grown above the substrate (10) and the cavities (21). Thereby, the cavity (21) is completely surrounded by monocrystalline material. Starting from this wafer, it is possible to form a thin membrane (52). The original wafer (25) must have a plurality of elongate cavities or channels (21), parallel and adjacent to one another. Trenches (44) are then excavated in the epitaxial layer (26), as far as the channels (21), and the dividers between the channels are removed by timed TMAH etching.
Abstract:
For manufacturing an SOI substrate, the following steps are carried out: providing a wafer (1) of semiconductor material; forming, inside the wafer, a plurality of passages forming a labyrinthine cavity (9) and laterally delimiting a plurality of pillars of semiconductor material (10); and oxidizing the pillars of semiconductor material to form a buried insulating layer. For forming the labyrinthine cavity, a trench is first formed in a substrate (2); an epitaxial layer (11) is grown, which closes the trench at the top; the wafer is annealed so as to deform the pillars and cause them to assume a minimum-energy handlebar-like shape; and a peripheral portion of the wafer is removed to reach the labyrinthine cavity, and side inlet openings (13a) are formed in the labyrinthine cavity. Oxidation is performed by feeding an oxidizing fluid through the side inlet openings (13a).