Abstract:
The invention relates to a passive microbolometer (12), comprising a reflective screen (17) and a suspended membrane with the function of radiation absorber, thermometer and electrical connection. The membrane is supported by at least two anchor elements (15) fixed to a support substrate (16). The reflective screen (17) may be embodied by at least one layer (18) of metallic material with a thickness of the order of 500 Å to 2000 Å. The screen (17) is arranged beneath the membrane in electrical contact with the membrane absorber element (13) such as to reduce the area resistance of the unit made up of the screen (17) and the absorbing element (13) and to avoid the absorption of radiation by the latter.
Abstract:
A cooling type infrared rays detecting apparatus is disclosed which prevents a fluctuation of an infrared rays image arising from a variation of the cooling temperature. The infrared rays detecting apparatus includes a dummy element mounted adjacent an infrared rays detecting device on a device mounting portion of an inner tube. The dummy element has a similar structure to that of each of infrared rays detecting elements of the infrared rays detecting device and is formed from the same material as the latter. A temperature variation of the dummy element is detected from a variation in resistance of the dummy element, and an output of the infrared rays detecting device is compensated for in response to the thus detected temperature variation to prevent a possible fluctuation of an infrared rays image arising from a temperature variation. Consequently, an infrared rays image of a high quality can be obtained.
Abstract:
A semiconductor sensor system, in particular a bolometer, includes a substrate, an electrode supported by the substrate, an absorber spaced apart from the substrate, a voltage source, and a current source. The electrode can include a mirror, or the system may include a mirror separate from the electrode. Radiation absorption efficiency of the absorber is based on a minimum gap distance between the absorber and mirror. The current source applies a DC current across the absorber structure to produce a signal indicative of radiation absorbed by the absorber structure. The voltage source powers the electrode to produce a modulated electrostatic field acting on the absorber to modulate the minimum gap distance. The electrostatic field includes a DC component to adjust the absorption efficiency, and an AC component that cyclically drives the absorber to negatively interfere with noise in the signal.
Abstract:
Method for measuring the radiation originating from one side of a wafer of semiconductor material using a pyrometer, wherein compensation radiation is projected onto that side to compensate for the reflectivity of the wafer of material and wherein the intensity of the compensation radiation is controlled subject to the amount of radiation measured by the pyrometer.
Abstract:
A detector assembly includes a dewar chamber having an aperture and an infrared radiation detector. The detector assembly also includes a mirror disposed adjacent the aperture of the dewar chamber, where the mirror has a reflective surface and an emitting region facing the aperture. The infrared radiation detector is configured to detect first radiation and second radiation from the mirror. The first radiation originates from at least one relatively cold surface in the dewar chamber and reflects off the reflective surface of the mirror. The second warm radiation originates from at least one relatively warm surface at or behind the emitting region. The infrared radiation detector is also configured to detect an artifact caused by a particle in the dewar chamber that blocks a portion of the first or second radiation.
Abstract:
A semiconductor device for measuring IR radiation is disclosed. It comprises a substrate and a cap enclosing a cavity, a sensor pixel in the cavity, comprising a first absorber for receiving said IR radiation, a first heater, first temperature measurement means for measuring a first temperature; a reference pixel in the same cavity, comprising a second absorber shielded from said IR radiation, a second heater, and second temperature measurement means for measuring a second temperature; a control circuit for applying a first/second power to the first/second heater such that the first temperature equals the second temperature; and an output circuit for generating an output signal indicative of the IR radiation based on a difference between the first and second power.
Abstract:
An infrared sensor for temperature sensing comprises a cap covering a substrate; an IR-radiation filtering window in the cap transparent to IR radiation; a first sensing element comprising a set of N thermocouples on the substrate covered by the cap, whose hot junctions may receive radiation; a second sensing element comprising a set of N thermocouples on the substrate covered by the cap whose hot junctions may not receive radiation; first connection modules for connecting a number N1 of thermocouples of the first sensing element, second connection modules for connecting a number N2 of thermocouples of the second sensing; connecting means for connecting an output of the first connection modules of the first sensing element with an output of the second connection modules of the second sensing element, and an output of the combined outputs of the sensing elements.