Abstract:
The present invention relates to a lateral spin device. The lateral spin device comprises: a transmission channel which is formed on a substrate; a source which is formed on the transmission channel; and a drain which comprises a drain free layer, a drain middle layer, and a drain fixing layer which are formed on the transmission channel. In the drain, the magnetic direction of the drain free layer against the drain fixing layer is changed by spin electrons which are injected from the source and diffused by the transmission channel.
Abstract:
PURPOSE: A spin transistor with enhanced spin injection efficiency is provided improve the spin injection efficiency into a semiconductor channel from a ferromagnetic material by using a MgO tunneling film/ semiconductor lamination structure. CONSTITUTION: A spin transistor(10) comprises a semiconductor substrate(12), a ferromagnetic material source(11), a ferromagnetic material drain(13), a gate electrode(14), and a MgO tunneling film or the organic tunneling film(23). The semiconductor substrate comprises a channel layer(7). The spin-polarized electronic is passed through the channel layer. The ferromagnetic material source implants the electronics spin-polarized to the channel layer. The ferromagnetic material drain detects the spin of the electronics passing through the channel layer. The gate electrode is formed between the source and the drain. A gate voltage is applied to the gate electrode.
Abstract:
A magnetic-nanoparticles/magnetic-semiconductors hybrid type spin device is provided to diversify resistance of magnetic semiconductor by controlling an electron spin property according to a localized and uneven magnetic field. A magnetic-nanoparticles/magnetic-semiconductors hybrid type spin device comprises: a magnetic semi-conductor thin film formed on a substrate; a conductive channel(11) formed on the magnetic semi-conductor thin film; an insulating layer(12) formed on the conductive channel; an electrical connection terminal formed by removing some parts of the insulating layer; and a magnetic-nanoparticles array(13) formed on the conductive channel. The magnetic semi-conductor thin film represents a single crystal thin film which has thickness of 10-1000 nanometers and shows semiconductor and ferromagnetic characteristics.
Abstract:
A spin transistor using perpendicular magnetization is provided to easily miniaturize a spin transistor while enabling resistance adjustment caused by a gate by forming a ferromagnetic source/drain whose magnetization direction is perpendicular to the upper surface of a channel layer. A channel layer(7) is formed in a semiconductor substrate(10). A ferromagnetic source(22) and a ferromagnetic drain(23) are disposed on the semiconductor substrate, separated from each other and magnetized in a direction perpendicular to the upper surface of the channel layer. A gate(15) is formed on the semiconductor substrate between the source and the drain, adjusting the spin direction of electrons passing through the channel layer. Spin-polarized electrons are implanted from the source to the channel layer, and the implanted electrons pass through the channel layer and are implanted into the drain. When the electron passes through the channel layer, the spin of the electron processes according to the voltage of the gate by a spin-orbit coupling inducing magnetic field(14). The magnetization direction of the source and the drain is uniformly fixed during an on-and-off operation. In the source and the drain, a ferromagnetic thin film and a non-magnetic thin film can be stacked alternately and repeatedly in a direction perpendicular to the upper surface of the channel layer.
Abstract:
본 발명은 스핀분극에 의한 전위차를 이용한 자기 메모리 소자 및 그 제조방법에 관한 것으로, 특히 화합물 반도체 2차원 전자우물층과 강자성체로 구성되고, 자화방향에 따른 전위차를 이용한 비 휘발성 스핀 메모리 소자에 관한 것이다. 본 발명의 스핀분극에 의한 전위차를 이용한 자기 메모리 소자는 2차원 전자우물층에서 스핀분극을 이용하여 강자성체와의 접합을 통해 평행 또는 반평행에서 나타나는 전위차를 이용하는 것을 특징으로 한다. 본 발명의 스핀분극에 의한 전위차를 이용한 자기 메모리 소자 제조방법은 화합물 반도체 기판 상에 2차원 전자우물층을 포함한 웨이퍼를 성장시키는 제1단계; 상기 결과물에 리쏘그래피(lithography) 공정과 이온밀링(ion-milling)을 이용하여 워드라인을 정의하는 2단계; 상기 결과물 상에서 상기 워드라인이 증착되지 않은 부분에 산화막을 증착하는 제3단계; 전자빔 리소그래피와 스퍼터를 이용하여 상기 워드라인 상에 강자성체를 증착하는 제4단계; 및 상기 결과물을 패터닝하여 Al이나 Au을 증착하고, 비트라인을 형성하는 제5단계;을 포함한다. 스핀분극 메모리 소자, 2차원 전자우물층, 전위차
Abstract:
PURPOSE: A room temperature operating ferromagnetic semiconductor fabricated by a PEMBE(Plasma-enhanced Molecular Beam Epitaxy) method and an electronic device using the same are provided to apply the magnetic semiconductor to a spin electron device by obtaining a characteristic of the magnetic semiconductor in the room temperature. CONSTITUTION: A room temperature operating ferromagnetic semiconductor fabricated by a PEMBE method includes a compound semiconductor of the third to the fifth group. The compound semiconductor is formed with one element A selected from Ga, Al, and In and one element B selected from N and P. The element A of the compound semiconductor is replaced by one element C selected from Mn, Mg, Co, Fe, Ni, Cr, and V. The Curie temperature of the room temperature operating magnetic semiconductor is more than the room temperature.
Abstract:
XSXAAXXP(서열번호 1), XXPXXAXP(서열번호 2), SXAAXXP(서열번호 3) 또는 XPXXAXP(서열번호 4)를포함하는그래피틱물질또는휘발성유기화합물에결합하는펩티드를제공한다.
Abstract translation:提供了与石墨材料或挥发性有机化合物结合的肽。 该肽包含由SEQ ID NO:1表示的X_2SX_1AAX_2X_3P,由SEQ ID NO:2表示的X_2X_2PX_3X_2AX_3P,由SEQ ID NO:3表示的SX_1AAX_2X_3P,或由SEQ ID NO:4表示的X_2PX_3X_2AX_3P。