Abstract:
A data pointer for generating an indirect addressing mode address within a single cycle for a selected one of a plurality of multiple indirect addressing modes. The data pointer is used with a processor architecture scheme which allows for encoding of multiple addressing modes. A data pointer register is coupled to the processor architecture scheme for storing a current address of an operand to be used in a simple indirect addressing mode. An incrementer is coupled to the data pointer register for incrementing the current address of an operand to be used in a simple indirect data addressing mode by a set number thereby generating an address of an operand to be used in an indirect addressing mode with auto preincrement. An adder is coupled to the data pointer register for combining the current address of an operand to be used in a simple indirect data addressing mode with an offset number thereby generating an address of an operand to be used in an indirect addressing mode with offset. A multiplexer circuit is coupled to an output of the data pointer register, to an output of the incrementer, and to an output of the adder for selecting a desired indirect addressing mode address.
Abstract:
A system for allowing multiple addressing modes while maximizing a number of available opcodes and addressable registers. The system has a processor architecture scheme which allows for encoding of multiple addressing modes through use of virtual register addresses. The system has an instruction set having a plurality of instructions. Each instruction has a plurality of bits wherein none of the plurality of bits in each of the plurality of instructions are dedicated bits for implementing different addressing modes. Each of the plurality of instructions are able to implement different addressing modes by addressing the virtual register addresses in the processor architecture scheme. Since no bits are required for implementing different addressing modes, the length of the opcode field and the register address field are determined by the number of opcodes and the number of addressable registers the user wishes to implement.
Abstract:
A system for allowing multiple addressing modes while maximizing a number of available opcodes and addressable registers. The system has a processor architecture scheme which allows for encoding of multiple addressing modes through use of virtual register addresses. The system has an instruction set having a plurality of instructions. Each instruction has a plurality of bits wherein none of the plurality of bits in each of the plurality of instructions are dedicated bits for implementing different addressing modes. Each of the plurality of instructions are able to implement different addressing modes by addressing the virtual register addresses in the processor architecture scheme. Since no bits are required for implementing different addressing modes, the length of the opcode field and the register address field are determined by the number of opcodes and the number of addressable registers the user wishes to implement.
Abstract:
A system for allowing a two word instruction to be executed in a single cycle thereby allowing a processor system to increase memory space without reducing performance. A first address bus is coupled to the linearized program memory for sending addresses of instructions to be fetched to a linearized program memory. A pointer is coupled to the first address bus for storing an address location of a current instruction in the linearized program memory to be fetched and for placing the address location of the current instruction to be fetched on the first address bus. A second address bus is provided and has one end coupled to the output of the program memory and a second end coupled to the first address bus. The second address bus is used for placing an address of an operand of a second word of the two word instruction onto the first address bus after an address of an operand of a first word of the two word instruction has been placed on the first address bus. This allows the addresses of the first word and the second word to be combined to provide the full address value of the two word instruction in a single cycle.
Abstract:
A direct memory access (DMA) controller may comprise a DMA bus, a memory coupled to the DMA bus, a DMA engine coupled with the DMA bus, a cyclic redundancy check (CRC) module coupled with the DMA engine, and a bus interface coupled to the DMA engine and the CRC module.
Abstract:
A cache module for a central processing unit has a cache control unit coupled with a memory, and a cache memory coupled with the control unit and the memory wherein the cache memory has a plurality of cache lines, each cache line having a storage area for storing instructions to be issued sequentially and associated control bits, wherein at least one cache line of the plurality of cache lines has at least one branch trail control bit which when set provides for an automatic locking function of the cache line in case a predefined branch instruction has been issued.
Abstract:
A microprocessor comprises a central processing unit receiving a first clock signal, a plurality of peripherals receiving a second clock signal a first select unit for selecting the first clock signal out of a plurality of clock signals and a second select unit for selecting the second clock signal out of the plurality of clock signals. The central processing unit comprises an execution unit which controls the select units upon execution of a low power mode instruction to select a clock signal for the central processing unit and the peripheral units.