Abstract:
Disclosed herein is a microelectrode platform that may be used for multiple biosystem applications including cell culturing techniques and biosensing. Also disclosed are microfabrication techniques for inexpensively producing microelectrode platforms.
Abstract:
MEMS devices (40) using etched cavities (42) are desirably formed using multiple etching steps. Preliminary cavities (20) formed by locally anisotropic etching to nearly the final depth have irregular (46) sidewalls (44) and steep and/or inconsistent sidewall (44) to bottom (54) intersection angles (48). This leads to less than desired cavity diaphragm (26) burst strengths. Final cavities (42) with smooth sidewalls (50), smaller and consistent sidewall (50) to bottom (54) intersection angles (58), and having more than doubled cavity diaphragm (26) burst strengths are obtained by treating the preliminary cavities (20) with TMAH etchant, preferably relatively dilute TMAH etchant. In a preferred embodiment, a cleaning step is performed between the etching step and the TMAH treatment step to remove any anisotropic etching by-products present on the preliminary cavities' (20) initial sidewalls (44). The multi-step cavity etching procedure is especially useful for forming robust MEMS pressure sensors, but is applicable to any type of MEMS device.
Abstract:
A method of nanomachining is provided. The method includes plunging a nanometer-scaled tip into a surface of a substrate at a first location in a first direction that is substantially perpendicular to the surface, thereby displacing a first portion of the substrate with the tip. The method also includes withdrawing the tip from the substrate in a second direction that is substantially opposite to the first direction. The method further includes moving at least one of the tip and the substrate laterally relative to each other. In addition, the method also includes plunging the tip into the substrate at a second location in a third direction that is substantially parallel to the first direction, thereby displacing a second portion of the substrate with the tip and withdrawing the tip from the substrate in a fourth direction that is substantially opposite to the third direction.
Abstract:
Disclosed is a method of treating the surface of an electrically conducting substrate surface wherein a tool comprising an ion-conducting solid material is brought into contact at least in some areas with the substrate surface, the tool is able to conduct the metal ions of the substrate and an electric potential is applied so that an electric potential gradient is applied between the substrate surface and the tool in such a manner that metal ions are drawn from the substrate surface or deposited onto the substrate surface by means of the tool.
Abstract:
In one aspect, the invention includes a method of forming a void region associated with a substrate, comprising: a) providing a substrate; b) forming a sacrificial mass over the substrate; c) subjecting the mass to hydrogen to convert a component of the mass to a volatile form; and d) volatilizing the volatile form of the component from the mass to leave a void region associated with the substrate. In another aspect, the invention includes a method of forming a capacitor construction, comprising: a) forming a first capacitor electrode over a substrate; b) forming a sacrificial material proximate the first capacitor electrode; c) forming a second capacitor electrode proximate the sacrificial material, the second capacitor electrode being separated from the first capacitor electrode by the sacrificial material, at least one of the first and second electrodes being a metal-comprising layer; and d) subjecting the sacrificial material to conditions which transport a component from the sacrificial material to the metal-comprising layer, the transported component leaving a void region between the first and second capacitor electrodes.
Abstract:
In one aspect, the invention includes a method of forming a void region associated with a substrate, comprising: a) providing a substrate; b) forming a sacrificial mass over the substrate; c) subjecting the mass to hydrogen to convert a component of the mass to a volatile form; and d) volatilizing the volatile form of the component from the mass to leave a void region associated with the substrate. In another aspect, the invention includes a method of forming a capacitor construction, comprising: a) forming a first capacitor electrode over a substrate; b) forming a sacrificial material proximate the first capacitor electrode; c) forming a second capacitor electrode proximate the sacrificial material, the second capacitor electrode being separated from the first capacitor electrode by the sacrificial material, at least one of the first and second electrodes being a metal-comprising layer; and d) subjecting the sacrificial material to conditions which transport a component from the sacrificial material to the metal-comprising layer, the transported component leaving a void region between the first and second capacitor electrodes.
Abstract:
In one aspect, the invention includes a method of forming a void region associated with a substrate, comprising: a) providing a substrate; b) forming a sacrificial mass over the substrate; c) subjecting the mass to hydrogen to convert a component of the mass to a volatile form; and d) volatilizing the volatile form of the component from the mass to leave a void region associated with the substrate. In another aspect, the invention includes a method of forming a capacitor construction, comprising: a) forming a first capacitor electrode over a substrate; b) forming a sacrificial material proximate the first capacitor electrode; c) forming a second capacitor electrode proximate the sacrificial material, the second capacitor electrode being separated from the first capacitor electrode by the sacrificial material, at least one of the first and second electrodes being a metal-comprising layer; and d) subjecting the sacrificial material to conditions which transport a component from the sacrificial material to the metal-comprising layer, the transported component leaving a void region between the first and second capacitor electrodes.
Abstract:
A method of manufacturing a diaphragm utilizing a precision grinding technique after etching a cavity in a wafer. A technique for preventing distortion of the diaphragm based on use of a sacrificial layer of porous silicon is disclosed.
Abstract:
A manufacturing method of a micro electro mechanical system (MEMS) device includes forming a buffer protection layer on a semiconductor structure, wherein the semiconductor structure includes a wafer, a MEMS membrane, and an isolation layer between the wafer and the MEMS membrane, and the buffer protection layer is located in a slit of the MEMS membrane and on a surface of the MEMS membrane facing away from the isolation layer; etching the wafer to form a cavity such that a portion of the isolation layer is exposed though the cavity; etching the portion of the isolation layer; and removing the buffer protection layer.
Abstract:
A method for manufacturing a mirror device, the method includes a first step of preparing a wafer having a support layer and a device layer; a second step of forming a slit in the wafer such that the movable portion becomes movable with respect to the base portion by removing a part of each of the support layer and the device layer from the wafer by etching and forming a plurality of parts each corresponding to the structure in the wafer, after the first step; a third step of performing wet cleaning for cleaning the wafer using a cleaning liquid after the second step; and a fourth step of cutting out each of the plurality of parts from the wafer after the third step. In the second step, a circulation hole penetrating the wafer is formed at a part other than the slit in the wafer by the etching.