Abstract:
The invention relates to a valve mechanism for controlling a disc valve (1) of an internal combustion engine and comprises a control shaft (2) which is driven by the engine crankshaft, and a push rod (3) which is driven by the control shaft (2) and which for the purpose of transmitting reciprocating movement is connected to one arm (14) of a two-arm rocker (4) which is pivotable about a rocker shaft (15) and the other arm (16) of which rocker transmits these movements to the valve (1). The valve mechanism according to the invention is characterized in that the control shaft (2) is intended to act upon the push rod (3) in both directions of movement thereof; in that the first arm (14) of the rocker (4) extends essentially at right angles to the push rod (3) and the second arm (16) of the rocker extends essentially parallel with the longitudinal geometric axis of the valve (1); and in that a lifting arm (5) is provided for transferring rocker movement to the valve (1). The other arm (16) of the rocker (4) is provided with activating means (18) for coaction with the lifting arm (5), one end of which is pivotally mounted on a lifting arm shaft (19) and the other end of which is provided with means for activating the valve (1). The lifting arm surface (20) which co-acts with the second arm (16) of the rocker (4) is profiled in a manner to achieve the desired pattern of movement of the second end of the lifting arm (5) in response to movement of the rocker (4).
Abstract:
Provided is a variable valve device for an internal combustion engine. The variable valve device includes intake- and exhaust-side swing arms that pivot to open and close intake valves and exhaust valves in two cylinders #1, #2, intake- and exhaust-side hydraulic lash adjusters that serve as pivot points of the respective swing arms, a variable valve system that continuously varies valve lift characteristics of the intake valves and lost motion mechanisms that stop opening and closing of the intake exhaust valves by lost motion of the intake- and exhaust-side hydraulic lash adjusters on the cylinder #1. The maximum valve lifts of the intake valves are set larger than valve lifts of the exhaust valves. The minimum valve lifts of the intake valves are set smaller than the valve lifts of the exhaust valves.
Abstract:
A driver that reciprocates has its reciprocation divided into a non-actuating portion and an actuating portion. The driver in one embodiment positions a carrier that has two pins, each pin being slidably mounted in its slot on a housing. One of the pins is an output pin that may be linked to operatively position a valve of an internal combustion engine. The two slots are configured such that each pin, during its motion range, does effect a capture of the other pin such that the captured pin is generally stationary. When the output pin is captured, the driver reciprocation causes the non-output pin to perform a lost-motion traverse of its slot. When the non-output pin is captured, the driver reciprocation actuates the output pin. A linked pair of such embodiments driven by a single driver can thus alternately actuate two valves.
Abstract:
An internal combustion engine includes a driving shaft, a pair of camshafts for driving engine valves, a transmission connecting the driving shaft to a first of said camshafts and a transmission connecting the first camshaft to the second camshaft. The transmission connecting the two camshafts to each other includes a pair of articulated parallelogram mechanisms each having two crank members rotatable with end portions of the camshafts and connected to each by means of a connecting rod. The crank members are made up of circular discs eccentrically mounted on the camshafts and rotatably received in circular openings formed at the ends of the respective connecting rod. The two crank members rotatable with the same camshaft are spaced from each other by a determined angle.
Abstract:
In a variable valve system for an internal combustion engine and its driving mechanism, the variable valve system comprises: a variable mechanism that revolves a control axle to change an operation characteristic of an engine valve; a projection section projected at an outer peripheral predetermined position in an axial direction of the control axle and on a tip of which a fixture section is formed; a fixture member fixed in a grasped state for the projection member via an engagement member engaged on the fixture section; a driving mechanism configured to provide a rotating force for the control axle via the fixture member; and control means (a control section) for controlling the driving mechanism in accordance with a driving state of the engine.
Abstract:
The invention relates to a variably adjustable mechanical valve gear for at least one gas-reversing valve (1) provided with a closing spring (2) on a piston-type internal combustion engine having a drive mechanism (13) for generating a lifting movement that is effective counter to the force of the closing spring (2) on the gas-reversing valve (1) and with a stroke transfer means (4) in the form of a pivoting element (8), arranged between the driving mechanism (13) and the gas-reversing valve (1), which acts upon the gas-reversing valve (1) in the direction of its movement axis (14) and for which the lifting distance in the direction of the movement axis (14) can be changed via an adjustable guide element (11), wherein the pivoting element is connected to the gas-reversing valve with its end that is effective in the direction of the movement axis (14) and to the driving mechanism (13) with its end opposite the gas-reversing valve (1) and is guided to pivot back and forth on the guide element (11) designed as control curve (11.1).
Abstract:
A valve operating device for an internal combustion engine enabling both valve timing and valve lift characteristic to be varied depending on engine operating conditions includes intake and exhaust camshafts, an eccentric cam fixed to a first one of the intake and exhaust camshafts so that an axis of the eccentric cam is eccentric to an axis of the first camshaft. A rockable cam is supported on the first camshaft so that the rockable cam rotates or oscillates about the axis of the first camshaft. A rocker arm is oscillatingly supported on an outer periphery of the eccentric cam so that a center of an oscillating motion of the rocker arm revolves around the axis of the first camshaft. Also provided is a control shaft variably controlling the center of the oscillating motion of the rocker arm.