Abstract:
Techniques for controllably directing beamlets to a target substrate are disclosed. The beamlets may be either positive ions or electrons. It has been shown that beamlets may be produced with a diameter of 1 μm, with inter-aperture spacings of 12 μm. An array of such beamlets, may be used for maskless lithography. By step-wise movement of the beamlets relative to the target substrate, individual devices may be directly e-beam written. Ion beams may be directly written as well. Due to the high brightness of the beamlets from extraction from a multicusp source, exposure times for lithographic exposure are thought to be minimized. Alternatively, the beamlets may be electrons striking a high Z material for X-ray production, thereafter collimated to provide patterned X-ray exposures such as those used in CAT scans. Such a device may be used for remote detection of explosives.
Abstract:
A plasma electron flood system, comprising a housing configured to contain a gas, and comprising an elongated extraction slit, and a cathode and a plurality of anodes residing therein and wherein the elongated extraction slit is in direct communication with an ion implanter, wherein the cathode emits electrons that are drawn to the plurality of anodes through a potential difference therebetween, wherein the electrons are released through the elongated extraction slit as an electron band for use in neutralizing a ribbon ion beam traveling within the ion implanter.
Abstract:
Techniques for controllably directing beamlets to a target substrate are disclosed. The beamlets may be either positive ions or electrons. It has been shown that beamlets may be produced with a diameter of 1 μm, with inter-aperture spacings of 12 μm. An array of such beamlets, may be used for maskless lithography. By step-wise movement of the beamlets relative to the target substrate, individual devices may be directly e-beam written. Ion beams may be directly written as well. Due to the high brightness of the beamlets from extraction from a multicusp source, exposure times for lithographic exposure are thought to be minimized. Alternatively, the beamlets may be electrons striking a high Z material for X-ray production, thereafter collimated to provide patterned X-ray exposures such as those used in CAT scans. Such a device may be used for remote detection of explosives.
Abstract:
A cold cathode glow discharge electron gun operating in the abnormal glow region produces a wide area collimated electron beam employed for flood exposure of thin film materials through electron beam transmission masks, resulting in spatially localized exposure and patterning of the thin film materials.
Abstract:
Предлагаемое изобретение относится к электронной технике, а более конкретно к газорозрядным электронным пушкам технологического назначения и может быть применено для электронно-лучевой плавки, испарения и других термических процессов, проводимых в вакууме с использованием мощных электронных пучков. Целью предлагаемого изобретения является расширение диапазона рабочих давлений при использовании для термических процессов газоразрядных электронных пушек и повышение стабильности их работы. Указанная цель достигается тем, что в газоразрядной электронной пушке, содержащей расположенные в герметичном корпусе на высоковольтном изоляторе холодный вогнутый катод, соосный ему анод с отверстием для вывода электронного пучка, присоединенный к аноду лучепровод с закрепленным на нем двумя фокусирующими линзами и катушками отклонения пучка, между фокусирующей линзой и катушками отклонения расположена охватывающая лучепровод газобалластная камера, оснащенная патрубком для откачки соединенная с лучепроводом отверстиями, поперечный размер которых не превышает 5 - 6 мм, а их суммарная проводимость для газа газобалластной камерой и его срезом.
Abstract:
본 발명은 빔폭 제어가능한 전자빔 제공 장치에 관한 것이다. 상기 전자빔 제공 장치는, 플라즈마를 생성하고 유지하는 플라즈마 생성 챔버; 상기 플라즈마 생성 챔버의 외주면에 배치되어 RF 전원을 제공하는 안테나; 상기 플라즈마 생성 챔버의 출구에 장착되는 1차 그리드; 상기 1차 그리드와 일정 거리 이격되어 배치되는 2차 그리드; 입구 및 출구를 구비하고 내부는 중공부로 이루어지며, 입구가 상기 2차 그리드 측에 배치되어, 상기 입구로 유입된 전자 입자들이 사전에 설정된 빔폭을 갖는 전자빔을 형성하여 출구로 유출되는 빔폭 제어부; 상기 빔폭 제어부의 입구의 외주면을 둘러싸는 형태로 이루어져 빔폭 제어부의 입구의 외주면에 배치되는 RF 차폐링;을 구비한다. 본 발명에 따른 전자빔 제어 장치는 상기 플라즈마 생성 챔버로부터 추출된 전자입자들이 사전에 설정된 빔폭을 갖는 전자빔의 형태로 빔폭 제어부의 출구로 제공된다.
Abstract:
A method for performing milling and imaging in a focused ion beam (FIB) system (10) employing an inductively-coupled plasma ion source (100), wherein two sets of FIB system operating parameters are utilized: a first set representing optimized parameters for operating the FIB system in a milling mode, and a second set representing optimized parameters for operating in an imaging mode. These operating parameters may comprise the gas pressure in the ICP source, the RF power to the ICP source, the ion extraction voltage, and in some embodiments, various parameters within the FIB system ion column, including lens voltages and the beam-defining aperture (305) diameter. An optimized milling process provides a maximum milling rate for bulk (low spatial resolution) rapid material removal from the surface of a substrate. An optimized imaging process provides minimized material removal and higher spatial resolutions for improved imaging of the substrate area being milled.
Abstract:
A plasma electron flood system, comprising a housing configured to contain a gas, and comprising an elongated extraction slit, and a cathode and a plurality of anodes residing therein and wherein the elongated extraction slit is in direct communication with an ion implanter, wherein the cathode emits electrons that are drawn to the plurality of anodes through a potential difference therebetween, wherein the electrons are released through the elongated extraction slit as an electron band for use in neutralizing a ribbon ion beam traveling within the ion implanter.
Abstract:
An ion source 100, comprising a first plasma chamber 102 including a plasma generating component 104 and a first gas inlet 122 for receiving a first gas such that said plasma generating component 104 and said first gas interact to generate a first plasma within said first plasma chamber 102, wherein said first plasma chamber 102 further defines an aperture 114 for extracting electrons from said first plasma, and a second plasma chamber 116 including a second gas inlet 118 for receiving a second gas, wherein said second plasma chamber 116 further defines an aperture 117 in substantial alignment with the aperture 112 of said first plasma chamber 102, for receiving electrons extracted therefrom, such that the electrons and the second gas interact to generate a second plasma within said second plasma chamber 116, said second plasma chamber 116 further defining an extraction aperture 120 for extracting ions from said second plasma.
Abstract:
The present disclosure provides electron source devices, electron source assemblies, and/or methods for generating electrons. The generated electrons can be used to facilitate spectroscopy, such as mass spectrometry, including mass selection or ion mobility.