Abstract:
반도체 장치의 액티브 구조물 형성 방법, 소자 분리 방법 및 트랜지스터 형성 방법이 개시되어 있다. 벌크 반도체 기판의 소정 부위를 식각하여 예비 액티브 패턴을 형성한다. 상기 예비 액티브 패턴의 하부 가장자리를 리세스시켜 액티브 패턴을 형성한다. 이어서, 상기 액티브 패턴의 리세스된 부위에 액티브 버리드 산화막을 형성하여, 반도체 장치의 액티브 구조물 형성하는 방법을 제공한다. 상기 액티브 구조물 상에 형성되는 트랜지스터는 접합 용량의 감소, 접합 누설 전류의 감소, 구동 전류의 증가 등의 우수한 특성을 가질 수 있다.
Abstract:
PROBLEM TO BE SOLVED: To provide a signal charge converter for a charge transfer element. SOLUTION: The signal converter includes a first driver FET of a first stage that receives a signal charge and converts the signal charge to a voltage. Subsequent driver FETs are connected to an output of the first driver FET, and gate insulating films of subsequent drivers include reduced thicknesses. The subsequent driver FETs constitute a second stage or a third stage. The reduced thicknesses of the gate insulating films of the subsequent driver FETs increase a voltage gain AV total without decreasing charge transfer efficiency, and raises the entire sensitivity of the signal converter. COPYRIGHT: (C)2005,JPO&NCIPI
Abstract:
콘택 패드를 포함하는 반도체 장치 및 이의 제조 방법이 개시되어 있다. 액티브 영역 및 필드 영역이 정의된 반도체 기판 상에 형성되는 게이트 구조물들, 상기 게이트 구조물들의 측면에 형성되는 제1 스페이서, 상기 게이트 구조물들 사이에 위치하는 반도체 기판의 액티브 영역 상에 상기 게이트 구조물보다 낮은 높이의 반도체 물질이 형성된 제1 콘택 패드, 상기 제1 콘택 패드 상에 위치하는 상기 제1 스페이서의 측면 및 상기 제1 콘택 패드에서 상기 필드 영역과 인접하는 일측면에 형성된 제2 스페이서, 상기 제1 콘택 패드 상에, 반도체 물질로 형성된 제2 콘택 패드를 포함하는 반도체 장치를 제공한다. 상기 반도체 장치의 콘택 패드는 쇼트 불량이 매우 감소된다.
Abstract:
기판으로부터 수직으로 연장된 게이트 채널을 갖는 디램기억 셀 및 그 제조방법을 제공한다. 이 기얼 셀의 트랜지스터는 기판으로 부터 수직으로 연장된 핀을 가지고, 이 핀 내에 형성된 채널영역이 형성된다. 채널영역과 중첩되어 핀의 상부를 게이트 전극이 가로지른다. 게이트 전극 및 핀 사이에 게이트 절연막이 개재된다. 게이트 전극 양측의 핀에 소오스 및 드레인 영역이 형성된다. 기판으로부터 수직으로 연장된 핀을 형성하고, 핀의 상부에 제1 불순물을 주입하고, 핀의 전면에 제2 농도의 불순물을 주입하여 채널을 형성한다. 핀의 상부 모서리를 포함하는 상기 핀의 상부에는 제1 및 제2 불순물이 중첩된 고 도핑층이 형성되고, 고 도핑층 하부의 핀에는 저 도핑층이 형성된다. 이 때, 제2 불순물은 경사이온주입법을 이용하여 주입합으로써 핀 내에 균일하게 형성할 수 있다.
Abstract:
PURPOSE: A method for fabricating FIN-type FET(Field Effect Transistor) in a semiconductor device is provided to prevent voids by using two-step trench-filling processes and a passivation layer. CONSTITUTION: An etch mask pattern(103) is formed on a semiconductor substrate(101). Trenches are formed by etching the exposed substrate to define silicon FIN(105). An upper passivation layer(113a) is partially filled for protecting the first trench-filling insulating layer. A second trench-filling insulating layer(115a) is entirely filled in the trench. A planarization etching of the second trench-filling insulating layer is performed. The upper side wall of the silicon FIN is exposed by removing at least a part of the upper passivation layer. A gate dielectric is formed. A gate conductive material is formed.
Abstract:
PURPOSE: A semiconductor device having a capacitor-under-bitline structure and a fabricating method thereof are provided to reduce the manufacturing cost by minimizing the number of lithography processes in comparison with a standard logic process. CONSTITUTION: A plurality of gate lines are formed on the first and the second regions of a semiconductor substrate(100). An insulating layer(112) is formed with a plurality of storage node contact holes(114a), a plurality of bit line contact holes(114b), gate lines of the second region, and metal contact holes(114c). A plurality of conductive plugs are formed within the storage node contact holes, the bit line contact holes, and the metal contact holes. The first metal lines(122) are formed on the insulating layer of the second region. A plurality of capacitors(132) are formed on the insulating layer of the first region. The first interlayer dielectric(120,124) is formed on the capacitor, the first metal line, and the insulating layer. The second metal lines(138b,138c) are formed on the first interlayer dielectric of the second region.
Abstract:
PURPOSE: A method for forming a double gate electrode and a method for fabricating a semiconductor device including a double gate electrode are provided to minimize a shot channel effect by increasing length of a channel without extending length of a gate electrode, horizontally. CONSTITUTION: A tunnel is formed in parallel to the surface of a semiconductor substrate(100) of an active region, which is defined by a trench formed on an isolation region. The first insulating layer(116) is coated on an inner surface of the tunnel and an inner surface of the trench. The inside of the tunnel is filled up by forming a lower gate electrode. The lower gate electrode is extended to the inside of the trench. The second insulating layer is formed on the surface of the semiconductor substrate of the active region. A top gate electrode is formed on the second insulating layer of the upper part of the tunnel.
Abstract:
Metal oxide semiconductor transistors and devices with such transistors and methods of fabricating such transistors and devices are provided. Such transistors may have a silicon well region having a first surface and having spaced apart source and drain regions therein. A gate insulator is provided on the first surface of the silicon well region and disposed between the source and drain regions and a gate electrode is provided on the gate insulator. A region of insulating material is disposed between a first surface of the drain region and the silicon well region. The region of insulating material extends toward but not to the source region. A source electrode is provided that contacts the source region. A drain electrode contacts the drain region and the region of insulating material.
Abstract:
PURPOSE: A DRAM(Dynamic Random Access Memory) semiconductor device and its manufacturing method are provided to be capable of restraining the generation of leakage current. CONSTITUTION: A DRAM semiconductor device is provided with a semiconductor substrate(100), a plurality of gate stack patterns(108) formed at the upper portion of the semiconductor substrate, a source/drain region(110) formed at the predetermined inner portions of the semiconductor substrate by being aligned at both sidewalls of the gate stack pattern, and a spacer(116) formed at both sidewalls of the gate stack pattern. The DRAM semiconductor device further includes a silicon epitaxial layer(118) formed at the upper portion of the source/drain region, a metal silicide layer(120) formed at the upper portion of the silicon epitaxial layer, and a plurality of metal pads(126a,126b) formed at the metal silicide layer.
Abstract:
PURPOSE: A contact structure for a semiconductor device and a manufacturing method thereof are provided to secure an overlap margin between a contact pad and a conductive layer contact in a case of misalignment in a formation of a contact. CONSTITUTION: A gate structure patterned on a semiconductor substrate(200) includes a gate electrode having a polysilicon layer(234) and a silicide layer(233), and a capping insulation layer having a silicon nitride layer(235) and a silicon oxide layer(236). In particular, the silicon oxide layer(236) in a peripheral or logic region(202) is removed when an n-type impurity is implanted to form an NMOS transistor. Furthermore, the silicon nitride layer(235) in the peripheral or logic region(202) is also removed when a p-type impurity is implanted to form a PMOS transistor. Therefore, though misalignment occurs in the subsequent process for forming a contact, a bit line contact in a cell region(201) stops at the silicon nitride layer(235) on the top of the gate structure. In addition, a metal contact in the peripheral or logic region(202) is stably made on the gate structure.