Abstract:
PURPOSE: An ultra small angle neutron scattering device is provided to reduce time for measuring an ultra small angle neutron scattering because a plurality of detectors can be reduced. CONSTITUTION: An ultra small angle neutron scattering device comprises a first previous monochromator(110), a first monochromator(120), and a first analyzer set(200). The first previous monochromator is arranged in an optical path(101) of neutron lights, thereby Bragg-diffracting the neutron lights. The first monochromator receives the diffracted neutron lights, thereby Bragg-diffracting to a side of specimens(121,131). The first analyzer set analyze the neutron lights penetrated through the specimen and comprises first analyzers(210,220,230) and first detector banks(241,251,261). The first analyzers are placed in an opposite side of the first monochromator based on the specimens. The first detector banks respectively detect the neutron lights diffracted by the first analyzers.
Abstract:
A new TaSi2-Si3N4 nanocomposite coating layer formed on a surface of tantalum or tantalum alloys is provided to improve isothermal oxidation resistance and repeated oxidation resistance of the coating layer at high temperatures and improve mechanical properties of the coating layer at high temperatures, and a manufacturing method of the nanocomposite coating layer is provided. A manufacturing method of a TaSi2-Si3N4 nanocomposite coating layer comprises the steps of: (a) simultaneously vapor-depositing tantalum and nitrogen onto a surface of tantalum or tantalum alloys as a matrix to form a TaN coating layer on the surface of the matrix, and forming a Ta2N coating layer on the TaN coating layer; and (b) vapor-depositing silicon onto the surface of the tantalum nitride coating layer to form a TaSi2-(28.4-11.7) vol.% Si3N4 nanocomposite coating layer, wherein the nanocomposite coating layer is gradient structured such that the Si3N4 volume fraction of the nanocomposite coating layer is reduced as it goes from the matrix side to the surface side.
Abstract translation:提供在钽或钽合金表面上形成的新的TaSi2-Si3N4纳米复合涂层,以提高涂层在高温下的等温抗氧化性和反复抗氧化性,并提高涂层在高温下的机械性能。 提供了纳米复合涂层的方法。 TaSi2-Si3N4纳米复合涂层的制造方法包括以下步骤:(a)将钽和氮同时气相沉积到钽或钽合金的表面上作为基体,以在基体的表面上形成TaN涂层, 并在TaN涂层上形成Ta2N涂层; 和(b)在氮化钽涂层的表面上气相沉积硅以形成TaSi 2(28.4-11.7)体积%Si 3 N 4纳米复合材料涂层,其中纳米复合涂层是梯度结构的,使得Si 3 N 4体积分数 当纳米复合涂层从基体侧流到表面侧时,纳米复合涂层被还原。
Abstract:
A method for analysis of the SiO2 concentration in an electrolyte for plasma electrolytic oxidation and a method for life extension of an electrolyte using the same are provided to supplement an accurate amount of SiO2 into the electrolyte by promptly analyzing Si anions polymerized in an electrolyte in which a plasma electrolytic oxidation process is carried out. A method for analysis of the SiO2 concentration in an electrolyte for plasma electrolytic oxidation comprises: a step(a) of preparing a plurality of electrolyte samples having different SiO2 concentrations; a step(b) of obtaining a calibration line showing the change of plasma anode voltage relative to the change of the SiO2 concentration in the electrolyte by measuring respective plasma anode voltages of the plurality of electrolyte samples; a step(c) of measuring a plasma anode voltage of an electrolyte collected in the same conditions as the step(b) by collecting an electrolyte on which an actual plasma electrolytic oxidation process is conducted; and a step(d) of obtaining a current concentration of SiO2 that is not polymerized in the actual plasma electrolytic oxidation process-performed electrolyte by comparing the calibration line obtained in the step(b) with the voltage measured in the step(c).
Abstract:
A microplasma technology for forming a coating layer without containing an alkali metal, and a microplasma technology for removing a porous external coating layer or minimizing thickness of the porous external coating layer are provided. A method for forming a protection film on an aluminium alloy using microplasma process comprises applying an alternating current of an alternating component and a cathode component into an aqueous alkali solution of 30 to 50 deg.C at 60 Hz to form a ceramic coating layer on the aluminum surface using microplasma formed on an aluminum surface, wherein the aqueous alkali solution is 0.0136 to 0.136 M of a quarternary organic aqueous ammonium solution, and comprises a principal component of tetraethyl ammonium hydroxide, (C2H5)4NOH, as a quarternary organic aqueous ammonium-based solution, or a principal component of tetrabutyl ammonium hydroxide, [CH3(CH2)3]NOH, as the quarternary organic aqueous ammonium-based solution.
Abstract:
본 발명은 몰리브덴, 니오비움, 탄탈륨, 텅스텐 등과 같은 고융점 금속들 및 이들의 합금들과 같이 우수한 고온 내산화성을 필요로 하는 소재들 표면상에 형성된 MoSi 2 -SiC 나노 복합 피복층 및 그 제조방법에 관한 것으로서, 고온에서 상기 모재들 표면에 몰리브덴 탄화물 코팅층 (MoC, Mo 2 C)을 형성한 후 실리콘을 기상 증착하여 고상치환반응에 의해서 MoSi 2 -SiC 나노 복합 피복층을 제조한다. 상기 방법으로 제조된 MoSi 2 -SiC 나노 복합 피복층은 등축정의 MoSi 2 결정입계에 SiC 입자들이 분포된 미세조직을 특징으로 하며, MoSi 2 -SiC 나노 복합 피복층에 존재하는 SiC 입자들의 부피 분율을 조절하여 모재의 열팽창계수와 유사한 조성의 MoSi 2 -SiC 나노 복합 피복층이 가능하다. 따라서, 모재와 MoSi 2 -SiC 나노 복합 피복층의 열팽창계수차에 의해서 생성될 수 있는 크랙의 발생을 근원적으로 억제함으로써 고온 반복 내산화성 및 저온 내산화성이 향상되고, 피복층의 기계적성질의 개선되어 열응력에 의한 미세크랙의 전파 억제할 수 있다. MoSi₂, 복합피복층, 내산화성
Abstract:
본 발명은 반도체/LCD 제조 시 사용되는 진공 플라즈마 챔버 및 그 내부 부품의 보호막으로서 열용사에 의한 금속 및 세라믹 혼합 코팅막을 제공한다. 상기 혼합층은 열용사에 의해 형성되는 코팅막의 균열발생, 기공 발생, 코팅막의 박리 현상 등이 방지되어 진공 플라즈마 챔버 및 그 내부 부품의 내식성을 향상시키고, 수명을 연장시켜 제품 신뢰성을 더욱 확보할 수 있게 한다. 열용사, 혼합 코팅층, 균열, 박리
Abstract:
본 발명은 모재로서 니오비움 또는 그 합금의 표면상에 형성된 NbSi 2 계 나노 복합 피복층 및 그 제조방법에 관한 것으로서, 고온에서 상기 모재 표면에 탄소 또는 질소를 기상 증착하여 니오비움 탄화물 또는 니오비움 질화물 확산층을 형성한 후 실리콘을 기상 증착하여 고상치환반응에 의해서 나노 복합 피복층을 제조한다. 상기 나노 복합 피복층은 등축정의 NbSi 2 결정입계에 SiC 또는 Si 3 N 4 입자들이 분포된 미세조직을 가지며, 나노 복합 피복층에 존재하는 SiC 또는 Si 3 N 4 입자들의 부피 분율에 의해서 모재의 열팽창계수와 유사한 조성의 NbSi 2 계 나노 복합 피복층이 형성된다. 이에 따라, 열팽창계수차에 의한 크랙의 발생을 근원적으로 억제하여 고온 반복 내산화성을 향상시키며, 또한, 피복층 표면에 치밀한 SiO 2 산화피막이 형성되어 고온 등온 내산화성의 향상과 더불어, 피복층의 기계적 성질의 개선, 즉 열응력에 의한 미세크랙의 전파 억제를 기할 수 있다. 니오비움, 피복층, 열팽창계수
Abstract:
PURPOSE: An aluminum/stainless clad sheet inserted with a magnetic iron sheet and a manufacturing method thereof are provided to produce economical and excellent clad sheets by greatly improving IH(Induction Heating) property of the aluminum/stainless clad sheet. CONSTITUTION: An aluminum/stainless clad sheet comprising an aluminum or aluminum alloy sheet and an austenite stainless steel sheet inserts and joins a magnetic iron or iron alloy sheet between the aluminum or aluminum alloy sheet and the austenite stainless steel sheet. An aluminum layer is formed on the surface of the iron or iron alloy sheet. The thickness of the iron or iron alloy sheet is within 0.2¯1.5mm. The aluminum/stainless clad sheet is formed by laying austenite stainless steel(304), aluminum or aluminum alloy, iron or iron alloy, and austenite stainless steel in order. The iron or iron alloy with magnetism has magnetic moment larger than ferritic stainless steel.