Abstract:
An apparatus for measuring positions of marks on a substrate, includes an illumination arrangement for supplying radiation with a predetermined illumination profile across a pupil of the apparatus, an objective lens for forming a spot of radiation on a mark using radiation supplied by said illumination arrangement, a radiation processing element for processing radiation that is diffracted by the mark, a first detection arrangement for detecting variations in an intensity of radiation output by the radiation processing element and for calculating therefrom a position of the mark, an optical arrangement, a second detection arrangement, wherein the optical arrangement serves to direct diffracted radiation to the second detection arrangement, and wherein the second detection arrangement is configured to detect size and/or position variations in the radiation and to calculate therefrom a defocus and/or local tilt of the mark.
Abstract:
Disclosed is a patterning device, a metrology target and a metrology method which have a top grating, formed in a resist layer, comprised of resist layer surface variations and topology, without having resist gratings trenches formed, after the photolithography step, all the way to the underlying layer in the device stack.
Abstract:
Disclosed is a method to determine a performance indicator for a metrology process, comprising obtaining first measurement data relating to a first set of measurement conditions and determining a first measurement recipe based on said first measurement data. The at least one performance indicator is determined from one or more components of said first measurement data obtained from a component analysis or statistical decomposition. Alternatively, the at least one performance indicator is determined from a comparison of one or more first measurement values relating to said first measurement recipe and one or more second measurement values relating to a second measurement recipe, where second measurement recipe is different to said first measurement data and relates a second set of measurement conditions, said second set of measurement conditions being different to said first set of measurement conditions.
Abstract:
Disclosed is a method of improving a measurement of a parameter of interest. The method comprises obtaining metrology data comprising a plurality of measured values of the parameter of interest, relating to one or more targets on a substrate, each measured value relating to a different measurement combination of a target of said one or more targets and a measurement condition used to measure that target and asymmetry metric data relating to asymmetry for said one or more targets. A respective relationship is determined for each of said measurement combinations relating a true value for the parameter of interest to the asymmetry metric data, based on an assumption that there is a common true value for the parameter of interest over said measurement combinations. These relationships are used to improve a measurement of the parameter of interest.
Abstract:
Disclosed is an illumination and detection apparatus for a metrology tool, and associated method. The apparatus comprises an illumination arrangement operable to produce measurement illumination comprising a plurality of discrete wavelength bands and comprising a spectrum having no more than a single peak within each wavelength band. The detection arrangement comprises a detection beamsplitter to split scattered radiation into a plurality of channels, each channel corresponding to a different one of said wavelength bands; and at least one detector for separate detection of each channel.
Abstract:
A method to measure a parameter of a manufacturing process comprising illuminating a target with radiation detecting the scattered radiation from the target determining the parameter of interest from an asymmetry of the detected radiation.
Abstract:
A method to determine a patterning process parameter, the method comprising: for a target, calculating a first value for an intermediate parameter from data obtained by illuminating the target with radiation comprising a central wavelength; for the target, calculating a second value for the intermediate parameter from data obtained by illuminating the target with radiation comprising two different central wavelengths; and calculating a combined measurement for the patterning process parameter based on the first and second values for the intermediate parameter.
Abstract:
A metrology apparatus (302) includes a higher harmonic generation (HHG) radiation source for generating (310) EUV radiation. Operation of the HHG source is monitored using a wavefront sensor (420) which comprises an aperture array (424, 702) and an image sensor (426). A grating (706) disperses the radiation passing through each aperture so that the image detector captures positions and intensities of higher diffraction orders for different spectral components and different locations across the beam. In this way, the wavefront sensor can be arranged to measure a wavefront tilt for multiple harmonics at each location in said array. In one embodiment, the apertures are divided into two subsets (A) and (B), the gratings (706) of each subset having a different direction of dispersion. The spectrally resolved wavefront information (430) is used in feedback control (432) to stabilize operation of the HGG source, and/or to improve accuracy of metrology results.
Abstract:
Disclosed is a metrology sensor apparatus and associated method. The metrology sensor apparatus comprises an illumination system operable to illuminate a metrology mark on a substrate with illumination radiation having a first polarization state and an optical collection system configured to collect scattered radiation, following scattering of the illumination radiation by the metrology mark. The metrology mark comprises a main structure and changes, relative to the first polarization state, at least one of a polarization state of a first portion of the scattered radiation predominately resultant from scattering by the main structure and a polarization state of a second portion of radiation predominately resultant from scattering by one or more features other than the main structure, such that the polarization state of the first portion of the scattered radiation is different to the polarization state of the second portion of the scattered radiation. The metrology sensor apparatus further comprises an optical filtering system which filters out the second portion of the scattered radiation based on its polarization state.
Abstract:
Target structures such as overlay gratings (Ta and Tb) are formed on a substrate (W) by a lithographic process. The first target is illuminated with a spot of first radiation (456a, Sa) and simultaneously the second target is illuminated with a spot of second radiation (456b, Sb). A sensor (418) detects at different locations, portions (460x-, 460x+) of said first radiation that have been diffracted in a first direction by features of the first target and portions (460y-, 460y+) of said second radiation that have been diffracted in a second direction by features of the second target. Asymmetry in X and Y directions can be detected simultaneously, reducing the time required for overlay measurements in X and Y. The two spots of radiation at soft x-ray wavelength can be generated simply by exciting two locations (710a, 710b) in a higher harmonic generation (HHG) radiation source or inverse Compton scattering source.