MEMS THERMAL DEVICE WITH SLIDEABLY ENGAGED TETHER AND METHOD OF MANUFACTURE
    41.
    发明申请
    MEMS THERMAL DEVICE WITH SLIDEABLY ENGAGED TETHER AND METHOD OF MANUFACTURE 审中-公开
    具有可滑动接合的四面体的MEMS热装置及其制造方法

    公开(公告)号:WO2007109203A2

    公开(公告)日:2007-09-27

    申请号:PCT/US2007/006752

    申请日:2007-03-19

    Abstract: A MEMS thermal switch is disclosed which couples a hot, expanding beam to a cool flexor beam using a slideably engaged tether, and bends the cool, flexor beam by the expansion of the hot beam. A rigidly engaged tether ties the distal ends of the hot, expanding beam and the cool, flexor beam together, whereas the slideably engaged tether allows the hot, expanding beam to elongate with respect to the cool, flexor beam, without loading the slideably engaged tether with a large shear force. As a result, the material of the tether can be made stiffer, and therefore transmit the bending force of the hot, expanding beam more efficiently to the cool, flexor beam.

    Abstract translation: 公开了一种MEMS热开关,其使用可滑动接合的系绳将热膨胀梁耦合到冷弯头梁,并且通过热梁的膨胀来弯曲冷弯曲梁。 刚性接合的系绳将热的,扩张的梁和冷的弯曲梁的远端连接在一起,而可滑动地接合的系绳允许热的,膨胀的梁相对于冷的屈肌梁而伸长,而不加载可滑动地接合的系绳 具有很大的剪切力。 结果,系链的材料可以变得更硬,并且因此将热膨胀梁的弯曲力更有效地传递到凉爽的弯曲梁。

    MEMBRANE STRUCTURE ELEMENT AND METHOD FOR MANUFACTURING SAME
    43.
    发明公开
    MEMBRANE STRUCTURE ELEMENT AND METHOD FOR MANUFACTURING SAME 有权
    HERMTELLUNGSVERFAHRENDAFÜR的MEMBRANSTRUKTURELEMENT

    公开(公告)号:EP2001062A2

    公开(公告)日:2008-12-10

    申请号:EP07740161.0

    申请日:2007-03-28

    Abstract: It is intended to provide a membrane structure element that can be easily manufactured, has an excellent insulating property and high quality; and a method for manufacturing the membrane structure element. The manufacturing method is for manufacturing a membrane structure element including a membrane formed of a silicon oxide film and a substrate which supports the membrane in a hollow state by supporting a part of a periphery of the membrane. The method includes: a film formation step of forming a heat-shrinkable silicon oxide film 13 on a surface of a silicon substrate 2 by plasma CVD method; a heat treatment step of performing a heat treatment to cause the thermal shrinkage of the silicon oxide film 13 formed on the substrate 1; and a removal step of removing a part of the substrate 2 in such a manner that a membrane-corresponding part of the silicon oxide film 13 is supported as a membrane in a hollow state with respect to the substrate 2 to form a recessed part 4.

    Abstract translation: 本发明提供可以容易地制造的膜结构元件,具有优异的绝缘性和高质量; 和膜结构元件的制造方法。 该制造方法用于制造膜结构元件,该膜结构元件包括由氧化硅膜形成的膜和通过支撑膜周边的一部分而将膜支撑在中空状态的基板。 该方法包括:通过等离子体CVD法在硅衬底2的表面上形成热收缩氧化硅膜13的成膜步骤; 进行热处理以使形成在基板1上的氧化硅膜13的热收缩的热处理步骤; 以及去除基板2的一部分的去除步骤,使得氧化硅膜13的膜相应部分作为相对于基板2的中空状态的膜被支撑以形成凹部4。

    METHOD FOR THE FABRICATION OF SUSPENDED POROUS SILICON MICROSTRUCTURES AND APPLICATION IN GAS SENSORS
    44.
    发明授权
    METHOD FOR THE FABRICATION OF SUSPENDED POROUS SILICON MICROSTRUCTURES AND APPLICATION IN GAS SENSORS 有权
    制造悬浮多孔硅微结构的方法及其在气体传感器中的应用

    公开(公告)号:EP1417151B9

    公开(公告)日:2007-08-08

    申请号:EP02712117.7

    申请日:2002-02-18

    Abstract: This invention provides a front-side silicon micromachining process for the fabrication of suspended Porous Silicon membranes in the form of bridges or cantilevers and of thermal sensor devices employing these membranes. The fabrication of the suspended Porous Silicon membranes comprises the following steps: (a) formation of a Porous Silicon layer (2) in, at least one, predefined area of a Silicon substrate (1), (b) definition of etch windows (5) around or inside said Porous Silicon layer (2) using standard photolithography and (c) selective etching of the Silicon substrate (1), underneath the Porous Silicon layer (2), by using dry etching techniques to provide release of the Porous Silicon membrane and to form a cavity (6) under the said Porous Silicon layer. Furthermore, the present invention provides a method for the fabrication of thermal sensors based on Porous Silicon membranes with minimal thermal losses, since the proposed methodology combines the advantages that result from the low thermal conductivity of Porous Silicon and the use of suspended membranes. Moreover, the front-side micromachining process proposed in the present invention simplifies the fabrication process. Various types of thermal sensor devices, such as calorimetric-type gas sensors, conductometric-type gas sensors and thermal conductivity sensors are described utilizing the proposed methodology.

    Abstract translation: 本发明提供了用于制造桥或悬臂形式的悬浮多孔硅膜和采用这些膜的热传感器装置的正面硅微机械加工方法。 悬浮多孔硅膜的制造包括以下步骤:(a)在硅衬底(1)的至少一个预定义区域中形成多孔硅层(2),(b)蚀刻窗口(5) )在所述多孔硅层(2)周围或内部使用标准光刻和(c)在所述多孔硅层(2)下方通过使用干法蚀刻技术选择性蚀刻所述硅衬底(1)以提供所述多孔硅膜 并在所述多孔硅层下方形成空腔(6)。 此外,本发明提供了一种制造基于多孔硅膜的热传感器的方法,其具有最小的热损失,因为所提出的方法结合了由多孔硅的低导热性和使用悬浮膜所产生的优点。 而且,本发明提出的正面微机械加工工艺简化了制造工艺。 利用所提出的方法描述了各种类型的热传感器装置,例如量热型气体传感器,电导型气体传感器和热导传感器。

    Process for a monolithically-integrated micromachined sensor and circuit
    48.
    发明公开
    Process for a monolithically-integrated micromachined sensor and circuit 有权
    Verfahren zur Herstellung eines ines ines ises chen chen chen chen chen chen chen chen chen chen chen

    公开(公告)号:EP1333503A2

    公开(公告)日:2003-08-06

    申请号:EP03075166.3

    申请日:2003-01-17

    Abstract: A process using integrated sensor technology in which a micromachined sensing element (12) and signal processing circuit (14) are combined on a single semiconductor substrate (20) to form, for example, an infrared sensor (10). The process is based on modifying a CMOS process to produce an improved layered micromachined member, such as a diaphragm (16), after the circuit fabrication process is completed. The process generally entails forming a circuit device (14) on a substrate (20) by processing steps that include forming multiple dielectric layers (34,36,38,44,46) and at least one conductive layer (40,50) on the substrate (20). The dielectric layers (34,36,38,44,46) comprise an oxide layer (34) on a surface of the substrate (20) and at least two dielectric layers (36,46) that are in tension, with the conductive layer (40,50) being located between the two dielectric layers (36,46). The surface of the substrate (20) is then dry etched to form a cavity (32) and delineate the diaphragm (16) and a frame (18) surrounding the diaphragm (16). The dry etching step terminates at the oxide layer (34), such that the diaphragm (16) comprises the dielectric layers (34,36,38,44,46) and conductive layer (40,50). A special absorber (52) is preferably fabricated on the diaphragm (16) to promote efficient absorption of incoming infrared radiation.

    Abstract translation: 一种使用集成传感器技术的方法,其中微机械感测元件(12)和信号处理电路(14)组合在单个半导体衬底(20)上以形成例如红外传感器(10)。 该方法基于在电路制造过程完成之后修改CMOS工艺以产生改进的分层微加工构件,例如隔膜(16)。 该方法通常需要通过处理步骤在衬底(20)上形成电路器件(14),该步骤包括在其上形成多个电介质层(34,36,38,44,46)和至少一个导电层(40,50) 衬底(20)。 电介质层(34,36,38,44,46)在衬底(20)的表面上包括氧化物层(34)和处于张力的至少两个电介质层(36,46),导电层 (40,50)位于两个电介质层(36,46)之间。 然后干燥蚀刻衬底(20)的表面以形成空腔(32)并描绘隔膜(16)和围绕隔膜(16)的框架(18)。 干蚀刻步骤终止在氧化物层(34)处,使得隔膜(16)包括电介质层(34,36,38,44,46)和导电层(40,50)。 优选地,在隔膜(16)上制造特殊吸收器(52)以促进进入的红外辐射的有效吸收。

    온도 감응 형광 공액고분자를 온도 센서로서 포함하는 미세유동칩 및 미세유동칩 내 마이크로 채널의 온도측정방법
    50.
    发明公开
    온도 감응 형광 공액고분자를 온도 센서로서 포함하는 미세유동칩 및 미세유동칩 내 마이크로 채널의 온도측정방법 无效
    微生物芯片包含热释电荧光共聚聚合物作为温度传感器和微流控芯片微通道温度测量方法

    公开(公告)号:KR1020110021570A

    公开(公告)日:2011-03-04

    申请号:KR1020090079446

    申请日:2009-08-26

    CPC classification number: B81B7/02 B81B7/008 B81B2201/0278 G01K11/12

    Abstract: PURPOSE: A microfluidic chip with a thermoresponsive fluorogenic conjugated polymer as a temperature sensor and a temperature measurement method of a micro channel and a microfluidic chip are provided to measure temperature by only observing the intensity of fluorescence. CONSTITUTION: A temperature measurement method of a micro channel and a microfluidic chip is as follows. A thermoresponsive fluorogenic conjugated polymer is used as a temperature sensor. The thermoresponsive fluorogenic conjugated polymer is injected into a micro channel(130) of the microfluidic chip. The fluorescence intensity of the thermo-reception fluorescence conjugated polymer generated by the temperature of the micro channel is measured. The temperature of the micro channel is measured by measuring the fluorescence intensity of the microfluidic chip.

    Abstract translation: 目的:提供具有作为温度传感器的热敏荧光共轭聚合物和微通道和微流体芯片的温度测量方法的微流控芯片,通过仅观察荧光强度来测量温度。 构成:微通道和微流控芯片的温度测量方法如下。 使用热响应性荧光共轭聚合物作为温度传感器。 将热反应性荧光共轭聚合物注入到微流体芯片的微通道(130)中。 测量由微通道的温度产生的热接收荧光共轭聚合物的荧光强度。 通过测量微流控芯片的荧光强度来测量微通道的温度。

Patent Agency Ranking