Abstract:
A MEMS thermal switch is disclosed which couples a hot, expanding beam to a cool flexor beam using a slideably engaged tether, and bends the cool, flexor beam by the expansion of the hot beam. A rigidly engaged tether ties the distal ends of the hot, expanding beam and the cool, flexor beam together, whereas the slideably engaged tether allows the hot, expanding beam to elongate with respect to the cool, flexor beam, without loading the slideably engaged tether with a large shear force. As a result, the material of the tether can be made stiffer, and therefore transmit the bending force of the hot, expanding beam more efficiently to the cool, flexor beam.
Abstract:
It is intended to provide a membrane structure element that can be easily manufactured, has an excellent insulating property and high quality; and a method for manufacturing the membrane structure element. The manufacturing method is for manufacturing a membrane structure element including a membrane formed of a silicon oxide film and a substrate which supports the membrane in a hollow state by supporting a part of a periphery of the membrane. The method includes: a film formation step of forming a heat-shrinkable silicon oxide film 13 on a surface of a silicon substrate 2 by plasma CVD method; a heat treatment step of performing a heat treatment to cause the thermal shrinkage of the silicon oxide film 13 formed on the substrate 1; and a removal step of removing a part of the substrate 2 in such a manner that a membrane-corresponding part of the silicon oxide film 13 is supported as a membrane in a hollow state with respect to the substrate 2 to form a recessed part 4.
Abstract:
It is intended to provide a membrane structure element that can be easily manufactured, has an excellent insulating property and high quality; and a method for manufacturing the membrane structure element. The manufacturing method is for manufacturing a membrane structure element including a membrane formed of a silicon oxide film and a substrate which supports the membrane in a hollow state by supporting a part of a periphery of the membrane. The method includes: a film formation step of forming a heat-shrinkable silicon oxide film 13 on a surface of a silicon substrate 2 by plasma CVD method; a heat treatment step of performing a heat treatment to cause the thermal shrinkage of the silicon oxide film 13 formed on the substrate 1; and a removal step of removing a part of the substrate 2 in such a manner that a membrane-corresponding part of the silicon oxide film 13 is supported as a membrane in a hollow state with respect to the substrate 2 to form a recessed part 4.
Abstract:
This invention provides a front-side silicon micromachining process for the fabrication of suspended Porous Silicon membranes in the form of bridges or cantilevers and of thermal sensor devices employing these membranes. The fabrication of the suspended Porous Silicon membranes comprises the following steps: (a) formation of a Porous Silicon layer (2) in, at least one, predefined area of a Silicon substrate (1), (b) definition of etch windows (5) around or inside said Porous Silicon layer (2) using standard photolithography and (c) selective etching of the Silicon substrate (1), underneath the Porous Silicon layer (2), by using dry etching techniques to provide release of the Porous Silicon membrane and to form a cavity (6) under the said Porous Silicon layer. Furthermore, the present invention provides a method for the fabrication of thermal sensors based on Porous Silicon membranes with minimal thermal losses, since the proposed methodology combines the advantages that result from the low thermal conductivity of Porous Silicon and the use of suspended membranes. Moreover, the front-side micromachining process proposed in the present invention simplifies the fabrication process. Various types of thermal sensor devices, such as calorimetric-type gas sensors, conductometric-type gas sensors and thermal conductivity sensors are described utilizing the proposed methodology.
Abstract:
This invention provides a front-side silicon micromachining process for the fabrication of suspended Porous Silicon membranes in the form of bridges or cantilevers and of thermal sensor devices employing these membranes. The fabrication of the suspended Porous Silicon membranes comprises the following steps: (a) formation of a Porous Silicon layer (2) in, at least one, predefined area of a Silicon substrate (1), (b) definition of etch windows (5) around or inside said Porous Silicon layer (2) using standard photolithography and (c) selective etching of the Silicon substrate (1), underneath the Porous Silicon layer (2), by using dry etching techniques to provide release of the Porous Silicon membrane and to form a cavity (6) under the said Porous Silicon layer. Furthermore, the present invention provides a method for the fabrication of thermal sensors based on Porous Silicon membranes with minimal thermal losses, since the proposed methodology combines the advantages that result from the low thermal conductivity of Porous Silicon and the use of suspended membranes. Moreover, the front-side micromachining process proposed in the present invention simplifies the fabrication process. Various types of thermal sensor devices, such as calorimetric-type gas sensors, conductometric-type gas sensors and thermal conductivity sensors are described utilizing the proposed methodology.
Abstract:
The invention relates to a method for producing a semiconductor component (100; ...; 700), particularly a multilayer semiconductor component, preferably a micromechanical component such as, in particular, a heat-conducting sensor, which has a semiconductor substrate (101), particularly made of silicon, and a sensor area (404). The aim of the invention is to economically produce a thermal insulation between the semiconductor substrate (101) and the sensor area (404). To this end, a porous layer (104; 501) is provided in the semiconductor component (100; ...; 700).
Abstract:
A process using integrated sensor technology in which a micromachined sensing element (12) and signal processing circuit (14) are combined on a single semiconductor substrate (20) to form, for example, an infrared sensor (10). The process is based on modifying a CMOS process to produce an improved layered micromachined member, such as a diaphragm (16), after the circuit fabrication process is completed. The process generally entails forming a circuit device (14) on a substrate (20) by processing steps that include forming multiple dielectric layers (34,36,38,44,46) and at least one conductive layer (40,50) on the substrate (20). The dielectric layers (34,36,38,44,46) comprise an oxide layer (34) on a surface of the substrate (20) and at least two dielectric layers (36,46) that are in tension, with the conductive layer (40,50) being located between the two dielectric layers (36,46). The surface of the substrate (20) is then dry etched to form a cavity (32) and delineate the diaphragm (16) and a frame (18) surrounding the diaphragm (16). The dry etching step terminates at the oxide layer (34), such that the diaphragm (16) comprises the dielectric layers (34,36,38,44,46) and conductive layer (40,50). A special absorber (52) is preferably fabricated on the diaphragm (16) to promote efficient absorption of incoming infrared radiation.
Abstract:
PURPOSE: A microfluidic chip with a thermoresponsive fluorogenic conjugated polymer as a temperature sensor and a temperature measurement method of a micro channel and a microfluidic chip are provided to measure temperature by only observing the intensity of fluorescence. CONSTITUTION: A temperature measurement method of a micro channel and a microfluidic chip is as follows. A thermoresponsive fluorogenic conjugated polymer is used as a temperature sensor. The thermoresponsive fluorogenic conjugated polymer is injected into a micro channel(130) of the microfluidic chip. The fluorescence intensity of the thermo-reception fluorescence conjugated polymer generated by the temperature of the micro channel is measured. The temperature of the micro channel is measured by measuring the fluorescence intensity of the microfluidic chip.