Abstract:
A method of cleaning and treating a device, including those of the micromechanical (10) and semiconductor type. The surface of a device, such as the landing electrode (22) of a digital micromirror device (10), is first cleaned with a supercritical fluid (SCF) in a chamber (50) to remove soluble chemical compounds, and then maintained in the SCF chamber until and during the subsequent passivation step. Passivants including PFDA and PFPE are suitable for the present invention. By maintaining the device in the SCF chamber, and without exposing the device to, for instance, the ambient of a clean room, organic and inorganic contaminants cannot be deposited upon the cleaned surface prior to the passivation step. The present invention derives technical advantages by providing an improved passivated surface that is suited to extend the useful operation life of devices, including those of the micromechanical type, reducing stiction forces between contacting elements such as a mirror and its landing electrode. The present invention is also suitable for cleaning and passivating other surfaces including a surface of semiconductor wafers, and the surface of a hard disk memory drive.
Abstract:
An anti stiction structure for cantilever formation technique. In one embodiment, the cantilever (130) includes downwardly extending plurality of legs (131 and 132) which preventing the substrate (100) from sticking to the cantilever. In another embodiment, the polymer cantilever (215) is prevented from sticking to the substrate (200) by at amortized stick layer (205) on the substrate and during the formation of the cantilever, the stick layer is removed later as a sacrificial layer.
Abstract:
In various embodiments of the invention, a regenerating protective coating is formed on at least one surface of an interior cavity of a MEMS device 80. Particular embodiments provide a regenerating protective coating 170 on one or more mirror surfaces of an interferometric light modulation device, also known as an iMoD in some embodiments. The protective coating can be regenerated through the addition of heat or energy to the protective coating.
Abstract:
The invention comprises a method for fabricating a monolithic chip containing integrated circuitry as well as a suspended polysilicon microstructure. The inventive method comprises 67 processes which are further broken down into approximately 330 steps. The processes and their arrangement allow for compatible fabrication of transistor circuitry and the suspended polysilicon microstructure on the same chip.
Abstract:
A method of cleaning and treating a device, including those of the micromechanical (10) and semiconductor type. The surface of a device, such as the landing electrode (22) of a digital micromirror device (10), is first cleaned with a supercritical fluid (SCF) in a chamber (50) to remove soluble chemical compounds, and then maintained in the SCF chamber until and during the subsequent passivation step. Passivants including PFDA and PFPE are suitable for the present invention. By maintaining the device in the SCF chamber, and without exposing the device to, for instance, the ambient of a clean room, organic and inorganic contaminants cannot be deposited upon the cleaned surface prior to the passivation step. The present invention derives technical advantages by providing an improved passivated surface that is suited to extend the useful operation life of devices, including those of the micromechanical type, reducing stiction forces between contacting elements such as a mirror and its landing electrode. The present invention is also suitable for cleaning and passivating other surfaces including a surface of semiconductor wafers, and the surface of a hard disk memory drive.
Abstract:
It is possible to use an oriented monolayer to limit the Van der Waals forces between two elements by passivation. The invention disclosed here details how to do so by building the device to be passivated (22), cleaning the surface to be passivated (24), activating the surface (26), heating it along with the material to be used as the monolayer (78), exposing a vapor of the material (30) to the surface and evacuating the excess material (32), leaving only the monolayer.
Abstract:
One or more stopper features (e.g., bump structures) are formed in a standard ASIC wafer top passivation layer for preventing MEMS device stiction vertically in integrated devices having a MEMS device capped directly by an ASIC wafer. A TiN coating may be used on the stopper feature(s) for anti-stiction. An electrical potential may be applied to the TiN anti-stiction coating of one or more stopper features.
Abstract:
In certain embodiments, a device is provided including a substrate (102) and a plurality of supports (104) over the substrate. The device further includes a mechanical layer (106) having a movable portion and a stationary portion. The stationary portion being disposed over the supports. The device further includes a reflective surface (108) positioned over the substrate and mechanically coupled to the movable portion (112). The device of certain embodiments further includes at least one movable stop element (110) displaced from and mechanically coupled to the movable portion. In certain embodiments, the at least a portion of the stop element may be positioned over the stationary portion.