Abstract:
Different kinds of printing pastes or inks are utilized in various combinations to develop multiple ceramic dielectric layers on graphitic substrates in order to create effective dielectric ceramic layers that combine good adhesion to both graphitic substrates and printed copper traces, and strong insulating capability. The pastes or inks may comprise a high thermal conductivity powder.
Abstract:
A low dielectric resin composition comprises a low dielectric resin containing acid anhydride, an epoxy resin, a rigid cross-linking agent, a soft cross-linking agent, and an accelerator. Such low dielectric resin can be dissolved in organic solvent more easily than a low dielectric resin without acid anhydride, and the low dielectric resin containing acid anhydride has a better compatibility with other organic components than a low dielectric resin without acid anhydride. A low dielectric resin composition with lower dielectric constant and better properties can thus be obtained. A film and a circuit board using such resin composition are also provided.
Abstract:
A printed circuit board for a memory card includes an insulating layer; a mounting part on a first surface of the insulating layer, the mounting part being electrically connected to a memory device; and a terminal part on a second surface of the insulating layer, the terminal part being electrically connected to an external electronic appliance, wherein a same metal layer having a same property is formed on exposed surfaces of the mounting part and the terminal part.
Abstract:
A method for waterproofing a device and the resulting device are provided. The device includes a printed circuit board assembly (PCBA), which includes a printed circuit board, and at least one electronic component disposed on the printed circuit board. A waterproof coating such as a polymer coating is disposed on or in contact with at least one portion of the at least one electronic component. A nanofilm is disposed on the PCBA. The nanofilm includes an inner coating and an outer coating. The inner coating is disposed on the printed circuit board or in contact with the waterproof coating. The inner coating comprises metal oxide nanoparticles having a particle diameter in a range of about 5 nm to about 100 nm. The outer coating in contact with the inner coating, and comprises silicon dioxide nanoparticles having a particle diameter in a range of 0.1 nm to 10 nm.
Abstract:
A heat dissipation structure including: a printed circuit board; a first heat-generating element; a second heat-generating element; and a cured product of a thermally conductive curable liquid resin composition, the printed circuit board having a first surface and a second surface that is opposite to the first surface, the first heat-generating element being placed on the first surface, the second heat-generating element being placed on the second surface, the first heat-generating element generating an equal or greater amount of heat than the second heat-generating element, the second heat-generating element being surrounded by the cured product, the first heat-generating element being surrounded by a layer that has a lower thermal conductivity than the cured product.
Abstract:
A flexible substrate repair structure, a manufacturing method thereof, and an inspection and repair method of a flexible substrate are provided. The flexible substrate repair structure includes a flexible substrate and at least one repair layer. The flexible substrate has a regular recess. The at least one repair layer is located on the flexible substrate and is completely filled in the regular recess. The material of the repair layer includes a polysilazane compound having the unit shown in formula (1) below, wherein Rx, Ry and Rz are respectively hydrogen, a C1 to C10 substituted alkyl group, an unsubstituted alkyl group, an alkenyl group, or an aromatic group.
Abstract:
Method for pore sealing a porous substrate, comprising: forming a continuous monolayer of a polyimide precursor on a liquid surface, transferring said polyimide precursor monolayer onto the porous substrate with the Langmuir-Blodgett technique, and imidization of the transferred polyimide precursor monolayers, thereby forming a polyimide sealing layer on the porous substrate. Porous substrate having at least one surface on which a sealing layer is provided to seal pores of the substrate, wherein the sealing layer is a polyimide having a thickness of a few monolayers and wherein there is no penetration of the polyimide into the pores.
Abstract:
A display device includes a substrate on which a plurality of pixels are arranged and a circuit for displaying images with respect to each pixel is formed, a substrate terminal as a terminal formed on the substrate, and an electronic component terminal as a terminal of an electronic component electrically connected to the terminal via an anisotropic conductive film. A conductive region that conducts to the anisotropic conductive film in the substrate terminal has a light transmissive part in which a material having light transmissivity penetrates the substrate surface in a perpendicular direction.
Abstract:
A printed circuit board for a memory card includes an insulating layer; a mounting part on a first surface of the insulating layer, the mounting part being electrically connected to a memory device; and a terminal part on a second surface of the insulating layer, the terminal part being electrically connected to an external electronic appliance, wherein a same metal layer having a same property is formed on exposed surfaces of the mounting part and the terminal part.
Abstract:
Method for pore sealing a porous substrate, comprising: forming a continuous monolayer of a polyimide precursor on a liquid surface, transferring said polyimide precursor monolayer onto the porous substrate with the Langmuir-Blodgett technique, and imidization of the transferred polyimide precursor monolayers, thereby forming a polyimide sealing layer on the porous substrate. Porous substrate having at least one surface on which a sealing layer is provided to seal pores of the substrate, wherein the sealing layer is a polyimide having a thickness of a few monolayers and wherein there is no penetration of the polyimide into the pores.