Abstract:
PURPOSE: A method for manufacturing a cathode tip of a field emission device is provided to manufacture a stable and even cathode tip in the low temperature by using a selective etching method of a silicon layer, in which ion is injected. CONSTITUTION: In a method for manufacturing a cathode tip of a field emission device, an insulating board(21), a conductive layer(22), a silicon layer(23B) and a cathode tip(25) are included. The conductive layer(22) and the silicon layer(23B) are layed on the insulating board(21) in order. In the insulating board(21), an oxide, a nitride film, quartz and a glass are used. In conductive layer(22), a metal and a silicon, in which ion is injected, are used. The cathode tip(25) of the sharp cone type is gained by removing a silicon layer with wet etching. In wet etching, HF, CH3COOH and HNO3 are used with being mixed. The solution has the high etching ratio about the silicon layer, in which ion is injected, but it has the low etching ration about the silicon(23B), on which doping isn't carried out, so the clear cathode tip(25) is manufactured.
Abstract:
Optimization techniques are disclosed for producing sharp and stable tips/nanotips relying on liquid Taylor cones created from electrically conductive materials with high melting points. A wire substrate of such a material with a preform end in the shape of a regular or concave cone, is first melted with a focused laser beam. Under the influence of a high positive potential, a Taylor cone in a liquid/molten state is formed at that end. The cone is then quenched upon cessation of the laser power, thus freezing the Taylor cone. The tip of the frozen Taylor cone is reheated by the laser to allow its precise localized melting and shaping. Tips thus obtained yield desirable end-forms suitable as electron field emission sources for a variety of applications. In-situ regeneration of the tip is readily accomplished. These tips can also be employed as regenerable bright ion sources using field ionization/desorption of introduced chemical species.
Abstract:
A carbon nanotube micro-tip structure includes an insulating substrate and a patterned carbon nanotube film structure. The insulating substrate includes a surface. The surface includes an edge. The patterned carbon nanotube film structure is partially arranged on the surface of the insulating substrate. The patterned carbon nanotube film structure includes two strip-shaped arms joined at one end to form a tip portion protruded from the edge of the surface of the insulating substrate and suspended. Each of the two strip-shaped arms includes a plurality of carbon nanotubes parallel to the surface of the insulating substrate.
Abstract:
Methods for fabrication of self-aligned gated tip arrays are described. The methods are performed on a multilayer structure that includes a substrate, an intermediate layer that includes a dielectric material disposed over at least a portion of the substrate, and at least one gate electrode layer disposed over at least a portion of the intermediate layer. The method includes forming a via through at least a portion of the at least one gate electrode layer. The via through the at least one gate electrode layer defines a gate aperture. The method also includes etching at least a portion of the intermediate layer proximate to the gate aperture such that an emitter structure at least partially surrounded by a trench is formed in the multilayer structure.
Abstract:
The present invention relates to a conductive nanostructure, a method for molding the same, and a method for manufacturing a field emitter using the same. More particularly, the present invention relates to a field-emitting nanostructure comprising a conductive substrate, a conductive nanostructure arranged on the conductive substrate, and a conductive interfacial compound disposed in the interface between the conductive substrate and the conductive nanostructure, as well as to a method for molding the same, and a method for manufacturing a field emitter using the same.
Abstract:
An ion source for use in a particle accelerator includes at least one cathode. The at least one cathode has an array of nano-sized projections and an array of gates adjacent the array of nano-sized projections. The array of nano-sized projections and the array of gates have a first voltage difference such that an electric field in the cathode causes electrons to be emitted from the array of nano-sized projections and accelerated downstream. There is a ion source electrode downstream of the at least one cathode, and the at least one cathode and the ion source electrode have the same voltage applied such that the electrons enter the space encompassed by the ion source electrode, some of the electrons as they travel within the ion source electrode striking an ionizable gas to create ions.
Abstract:
An electron emission device and a method of manufacturing the same are provided. The electron emission device includes: i) a substrate including a metal tip; ii) carbon nano tubes that are positioned on the metal tip; and iii) a lithium layer that is positioned on the carbon nano tubes.
Abstract:
The present invention relates to a conductive nanostructure, a method for molding the same, and a method for manufacturing a field emitter using the same. More particularly, the present invention relates to a field-emitting nanostructure comprising a conductive substrate, a conductive nanostructure arranged on the conductive substrate, and a conductive interfacial compound disposed in the interface between the conductive substrate and the conductive nanostructure, as well as to a method for molding the same, and a method for manufacturing a field emitter using the same.
Abstract:
At least one exemplary embodiment is directed to a propulsion device that ionizes a portion of a medium and ExB drifts the ionized portion providing thrust where the ionized portion is created using high pressure field emitters comprising: a substrate layer; a gate layer; a field emitter tip; and a cover layer, wherein the field emitter tip is configured to emit electrons in a region when there is a potential difference between the gate layer and the field emitter tip, where the cover layer separates an ambient environment at a pressure from the region, and where a substantial portion of the electrons pass through the cover layer.
Abstract:
A method of manufacturing field-emitter arrays by a molding technique includes uniformly controlling a shape of mold holes to obtain field emitter tips having diameters below 100 nm and blunted side edges. Repeated oxidation and etching of a mold substrate formed of single-crystal semiconductor mold wafers is carried out, wherein the mold holes for individual emitters are fabricated by utilizing the crystal orientation dependence of the etching rate.