Abstract:
The present invention relates to a CMOS image sensor including an infrared pixel with enhanced spectral characteristics in which a stepped portion is formed between color filters of RGB pixels and a filter of an infrared pixel, and a manufacturing method thereof. A stepped portion is formed between color filters and an infrared filter according to respective pixels and the thicknesses of the filters are arbitrarily adjusted regardless of the characteristics of material in the formation of the color filters and the infrared filter, so that crosstalk characteristics are improved.
Abstract:
A 4-color image sensor may include a first unit pixel region having Gr, R, IR and B pixels on four divided regions; and a second unit pixel region having IR, R, Gb and B pixels on four divided regions, wherein the first unit pixel region and the second unit pixel regions are alternately arranged in a vertical direction and a horizontal direction, and the IR pixel is consecutively arranged along a diagonal line direction.
Abstract:
The present invention provides a stack memory device and a method for operating same. The stack memory device, according to the present invention, is provided with: a first memory chip in which first type memory cells are repeatedly arranged in row direction and column direction, and which comprises one or more cell arrays, in which a dump line is connected to the each first type memory cell; and a second memory chip in which second type memory cells are repeatedly arranged in row direction and column direction, and which comprises one or more cell arrays, in which a dump line is connected to the each second type memory cell, wherein first pads are connected to the dump lines of the first type memory cells and second pads are connected to the dump lines of the second type memory cells, the first pads and the second pads having one-to-one correspondence.
Abstract:
The present invention relates to a backlight image sensor chip having improved chip driving performance, in which a region other than a pad region, on which a conductive pad is formed, and a sensing region, on which an optical filter is formed, is used as a region for auxiliary driving so that additional functions such as auxiliary power supply, auxiliary signal transmission and auxiliary operation control can be performed, without additional process, in the backlight image sensor chip having a restricted area, thereby improving the chip driving performance.
Abstract:
A technology capable of simplifying a process and securing a misalignment margin when bonding two wafers to manufacture an image sensor using backside illumination photodiodes. When manufacturing an image sensor through a 3D CIS (CMOS image sensor) manufacturing process, two wafers, that is, a first wafer and a second wafer are electrically connected using the vias of one wafer and the bonding pads of the other wafer. Also, when manufacturing an image sensor through a 3D CIS manufacturing process, two wafers are electrically connected using the vias of both the two wafers.
Abstract:
An image sensor cell is divided into two chips, and a capacitor for noise reduction is formed in a bottom wafer in correspondence with a unit pixel of a top wafer in a stack chip package image sensor having a coupling structure of the two chips, so that noise characteristics of the image sensor are improved. A stack chip package image sensor includes: a first semiconductor chip that includes a photodiode, a transmission transistor, and a first conductive pad and outputs image charge, which is output from the photodiode, through the first conductive pad; and a second semiconductor chip that includes a drive transistor, a selection transistor, a reset transistor, and a second conductive pad and supplies a corresponding pixel with an output voltage corresponding to the image charge received from the first semiconductor chip through the second conductive pad. The second semiconductor chip includes a capacitor for noise reduction.
Abstract:
The present invention relates to a method for electrically connecting wafers, which physically bonds two wafers through an oxide-to-oxide bonding method and then electrically connects the two wafers through a butting contact structure. The wafers are physically bonded to each other through a relatively simple method, and then electrically connected to through TSVs or butting contact holes. Therefore, since the fabrication process may be simplified, a process error may be reduced, and the product yield may be improved.
Abstract:
The present invention introduces a separation type unit pixel of an image sensor having a three-dimensional (3D) structure, which is capable of maximizing transmission efficient of a charge generated through a photodiode to a floating diffusion area. The separation type unit pixel may include a first wafer on which a photodiode and a transmission transistor are formed and a second wafer on which a reset transistor and a source follower transistor are formed. In particular, the photodiode has a positive region to which an N_ground voltage is applied, the N_ground voltage having a lower voltage level than a ground voltage used in the second wafer.
Abstract:
A semiconductor device having improved heat-dissipation characteristics is capable effectively discharging heat that is generated inside the semiconductor device of a three-dimensional laminated structure, to the outside of the semiconductor device by utilizing an internal connector used during bonding.
Abstract:
The present invention relates to a backlight image sensor chip having improved chip driving performance, in which a region other than a pad region, on which a conductive pad is formed, and a sensing region, on which an optical filter is formed, is used as a region for auxiliary driving so that additional functions such as auxiliary power supply, auxiliary signal transmission and auxiliary operation control can be performed, without additional process, in the backlight image sensor chip having a restricted area, thereby improving the chip driving performance.