Abstract:
확장 검색 기능을 제공하는 메타 정보 및 서브 타이틀 정보가 기록된 저장 매체 및 그 재생 장치가 개시된다. 본 발명에 따른 동영상 정보가 기록된 저장 매체는, 동영상 정보; 상기 동영상 정보에 대한 확장 검색 기능을 제공하기 위한 메타 정보; 및 상기 동영상 정보에 대한 자막을 제공하기 위한 서브 타이틀 정보를 포함하며, 상기 메타 정보 및 상기 서브 타이틀 정보는 별도의 파일로 분리되어 기록되는 것을 특징으로 한다. 이에 따라, 다양한 검색 키워드에 의한 확장 검색이 가능하고, 서브 타이틀 정보가 자막 또는 검색 키워드로 사용될 수 있며, 메타 정보의 크기가 줄어 데이터 처리가 용이하다.
Abstract:
재생 모드 정보가 설정된 동영상 재생 장치, 저장 매체 및 그 재생 방법이 개시된다. 본 발명에 따른, 재생 모드 정보가 설정된 동영상 재생 장치는, 재생 가능한 데이터의 타입을 나타내는 재생 모드 정보가 기록된 저장 영역; 및 동영상 정보를 재생하기 위한 제1 타입의 데이터 및 상기 동영상 정보를 이용한 부가 기능을 제공하기 위한 제2 타입의 데이터 중 적어도 하나의 타입의 데이터가 기록된 저장 매체로부터, 상기 재생 모드 정보에 기초하여 제1 타입 또는/ 및 제2 타입의 데이터를 선택적으로 재생하는 재생부를 포함하는 것을 특징으로 한다. 이에 따라, 동영상 정보의 재생 또는/ 및 부가 기능을 제공하는 저장 매체를 재생 장치의 종류에 관계없이 원활하게 재생할 수 있다.
Abstract:
PURPOSE: A method of fabricating a non-volatile memory device having improved threshold voltage uniformity is provided to round an edge of an isolation layer and prevent a thinning effect in the edge of the isolation layer by utilizing a radical oxidation method using oxygen and hydrogen. CONSTITUTION: A high-voltage oxide layer is formed by oxidizing a recessed high-voltage region of a silicon substrate(10). Trenches are formed at a cell and low-voltage region and the recessed high-voltage region, respectively. An isolation layer is formed by filling up the trenches with a gap-fill oxide layer. A tunnel oxide layer(70) is formed on the silicon substrate including the isolation layer by a radical oxidation method. A floating gate, a dielectric layer, and a control gate are formed on the tunnel oxide layer.
Abstract:
PURPOSE: A shallow trench isolation method is provided to prevent adjacent gates from being short-circuited by silicon residue by completely eliminating an exposed portion of a silicon layer pattern or silicon structure in a dry etch process for forming a gate. CONSTITUTION: A pattern structure in which an oxide layer pattern, a polysilicon layer pattern and the first nitride layer pattern are sequentially stacked is formed on a silicon substrate(30). An oxide barrier layer(40) composed of a nitride layer is consecutively formed on the sidewall and upper surface of the pattern structure and the exposed silicon substrate. The oxide barrier layer exposed to the silicon substrate is etched by using the pattern structure as an etch mask. The silicon substrate is etched to form a trench(42). The inner surface of the trench is oxidized to form a thermal oxide layer on the inner surface of the trench. A field oxide layer filling the trench is formed.
Abstract:
PURPOSE: A method for isolating a self-aligned shallow trench and a method for fabricating a non-volatile memory device by using the same are provided to form simultaneously a gate and an active region by using a self-aligned shallow trench isolation method. CONSTITUTION: An oxide layer is formed on a semiconductor substrate(100). The first conductive layer is formed on the oxide layer. A stopping layer is formed on the first conductive layer. A hard mask layer and an anti-reflective layer are formed on the stopping layer. A mask pattern is formed by etching the anti-reflective layer and the hard mask layer. A gate oxide layer(102), the first floating gate pattern(104), and a stopping layer pattern are formed by patterning the stopping layer, the first conductive layer, and the oxide layer. A trench(110) is formed by etching the substrate(100) neighboring to the first floating gate pattern(104). A sidewall of the first floating gate pattern(104) is rounded. A trench oxide layer is formed on an inner face of the trench(110). A field oxide layer is formed in the inside of the trench(110). The second floating gate pattern(118) is formed by removing a conductive layer of the field oxide layer. An ONO dielectric layer(120) is formed on the whole surface of the above structure. A control gate layer(122) is formed on the dielectric layer(120). A stack type gate structure is formed by etching the control gate layer(122), the dielectric layer(120), and the second floating gate pattern(118) and the first floating gate pattern.
Abstract:
PURPOSE: A method for fabricating a semiconductor memory device is provided to prevent electrical damage caused by a short-circuit between floating gates, by making the floating gate not left in an anisotropical etch process. CONSTITUTION: The first insulation layer is formed on a semiconductor substrate. After the first conductive layer having a density gradient is formed on the first insulation layer, the second insulation layer is formed on the first conductive layer. The first insulation layer, the second insulation layer, the first conductive layer and the substrate are selectively etched to form a trench in a predetermined region of the substrate. After an insulation layer sidewall is formed inside the trench, the third insulation layer is formed in the trench. The second insulation layer is eliminated. The second conductive layer is formed on the first conductive layer, extending to the third insulation layer.
Abstract:
자기정렬된 셸로우 트렌치 소자분리 방법 및 이를 이용한 불휘발성 메모리 장치의 제조방법이 개시되어 있다. 반도체 기판 상에 산화막, 제1 실리콘층 및 질화막을 차례로 형성한다. 하나의 마스크를 사용하여 질화막, 제1 실리콘층 및 산화막을 식각하여 산화막 패턴, 제1 실리콘층 패턴 및 질화막 패턴을 형성한다. 상기 마스크를 이용하여 제1 실리콘층 패턴에 인접한 기판의 상부를 식각하여 트렌치를 형성한다. 제1 실리콘층 패턴 및 기판을 선택적으로 식각하여 산화막 패턴을 돌출시킨 후, 트렌치의 내면을 산화시켜 트렌치 열산화막을 형성한다. 트렌치를 매립하는 필드 산화막을 형성한다. 제1 실리콘층 패턴의 측벽이 포지티브 기울기를 갖는 것을 개선하여 후속하는 게이트 식각시 실리콘층의 잔류물에 의해 소자의 전기적 불량이 발생하는 것을 방지할 수 있다.
Abstract:
PURPOSE: A gate stack formation method of semiconductor devices is provided to prevent a generation of voids between a polysilicon layer and a metal silicide by using a CVD(Chemical Vapor Deposition) oxide and a thermal oxide. CONSTITUTION: After forming a gate oxide(410) on a semiconductor substrate(400), a polysilicon layer(420) and a metal silicide film(430) are sequentially formed on the gate oxide(410). A silicon nitride(440) and a silicon oxide(450) are sequentially formed on the metal silicide film. By sequentially etching the silicon oxide, the silicon nitride, the metal silicide film and the polysilicon layer, a gate stack is formed. A CVD oxide(470) is formed on the entire surface of the resultant structure. By performing a thermal oxidation, a thermal oxide(480) is formed at both sidewalls of the polysilicon layer(420) and the metal silicide film(430).
Abstract:
PURPOSE: A fabrication method of a semiconductor device is to minimize a threshold voltage variation of MOSFET by maintaining high an impurity concentration of a gate electrode. CONSTITUTION: A trench isolation(102) is formed in an N-type well(100) formed in a P-type semiconductor substrate. A gate oxide layer(104) having a thickness of 50 angstroms is grown in the N-type well with the trench isolation formed therein. A first polycrystalline silicon layer is formed on the upper portion of the resultant material with the gate oxide layer formed thereon. Indium ions are implanted into the N-type well with the first polycrystalline silicon layer formed thereon. The first polycrystalline silicon layer is thinly formed at a thickness of 1000 angstroms so that the Indium ions are penetrated thereinto. A second polycrystalline silicon layer is formed at a thickness of 2000 angstroms to compensate the first polycrystalline silicon layer. A gate electrodes(106a,110a) are formed by patterning the second and the first polycrystalline silicon layers. A self-aligned source and drain region(112) is formed by implanting a B or a BF2 having a low concentration by using the gate electrodes as an ion implantation mask. Then, a sidewall spacer(114) is respectively formed on side walls of the gate electrodes.
Abstract:
PURPOSE: A method for manufacturing a semiconductor device having a structure of a dual gate is provided to protect a semiconductor substrate by preventing a gate oxidation layer from being deteriorated by penetration of a boron. CONSTITUTION: A method for manufacturing a semiconductor device having a structure of a dual gate comprises the steps of: forming a first insulation layer on a semiconductor substrate; forming a second insulation layer on the first insulation layer by a chemical vapor deposition(CVD) method; performing a heat treatment after ion-injecting a nitrogen to the resultant, and having the nitrogen file up in the boundary between the first insulation layer and the semiconductor substrate; eliminating the first and second insulation layers; and forming a gate insulation layer on the resultant.