Abstract:
A MEMS valve device driven by electrostatic forces is provided. The MEMS valve device includes a substrate having an aperture formed therein, a substrate electrode, a moveable membrane that overlies the aperture and has an electrode element and a biasing element. Additionally, at least one resiliently compressible dielectric layer is provided to insure electrical isolation between the substrate electrode and electrode element of the moveable membrane. In operation, a voltage differential is established between the substrate electrode and the electrode element of the moveable membrane to move the membrane relative to the aperture to thereby controllably adjust the portion of the aperture that is covered by the membrane. In another embodiment the resiliently compressible dielectric layer(s) have a textured surface; either at the valve seat, the valve seal or at both surfaces. In another embodiment of the invention a pressure-relieving aperture is defined within the substrate and is positioned to underlie the moveable membrane.
Abstract:
A micro mechanical component of the present invention comprises a base, and at least one drive portion supported on the base and relatively driving to the base, in which the drive portion is formed from a diamond layer. Thus, because the drive portion has excellent mechanical strength and modulus of elasticity, the operational performance can be greatly improved as a micro mechanical component processed in a fine shape, from the conventional level. Further, because the drive portion exhibits excellent device characteristics under severe circumstances, the range of applications as a micro mechanical component can be widely expanded from the conventional range.
Abstract:
The present invention provides a micropump comprising a silicon substrate (38), which is sandwiched between glass substrates (39, 40) and which is formed with a diaphragm (36) and a valve, the valve including a valve membrane (50) and a valve member (35) for controlling fluid flow through a through-hole (34a) in the valve membrane, the valve member engaging one of the glass substrates. The diaphragm and the valve membrane are disposed closer to the glass substrate engaged by the valve member than to the other glass substrate.
Abstract:
High-density microfluidic chips contain plumbing networks with thousands of micromechanical valves and hundreds of individually addressable chambers. These fluidic devices are analogous to electronic integrated circuits fabricated using large scale integration (LSI). A component of these networks is the fluidic multiplexor, which is a combinatorial array of binary valve patterns that exponentially increases the processing power of a network by allowing complex fluid manipulations with a minimal number of inputs. These integrated microfluidic networks can be used to construct a variety of highly complex microfluidic devices, for example the microfluidic analog of a comparator array, and a microfluidic memory storage device resembling electronic random access memories.
Abstract:
Plastic microfluidic structures having a substantially rigid diaphragm that actuates between a relaxed state wherein the diaphragm sits against the surface of a substrate and an actuated state wherein the diaphragm is moved away from the substrate. As will be seen from the following description, the microfluidic structures formed with this diaphragm provide easy to manufacture and robust systems, as well readily made components such as valves and pumps.
Abstract:
A method for producing a corrosion-resistant channel in a wetted path of a silicon device enables such device to be used with corrosive compounds, such as fluorine. A wetted path of a MEMS device is coated (210) with either an organic compound resistant to attack by atomic fluorine or a material capable of being passivated by atomic fluorine. The device is then exposed to a gas that decomposes into active fluorine compounds (220) when activated by a plasma discharge. One example of such a gas is CF4, an inert gas that is easier and safer to work with than volatile gases like CIF3. The gas will passivate the material (if applicable) and corrode any exposed silicon. The device is tested (230) in such a manner that any unacceptable corrosion of the wetted path will cause the device to fail. If the device operates properly, the wetted path is deemed to be resistant to corrosion by fluorine or other corrosive compounds, as applicable.
Abstract:
A method for producing a corrosion-resistant channel in a wetted path of a silicon device enables such device to be used with corrosive compounds, such as fluorine. A wetted path of a MEMS device is coated (210) with either an organic compound resistant to attack by atomic fluorine or a material capable of being passivated by atomic fluorine. The device is then exposed to a gas that decomposes into active fluorine compounds (220) when activated by a plasma discharge. One example of such a gas is CF4, an inert gas that is easier and safer to work with than volatile gases like CIF3. The gas will passivate the material (if applicable) and corrode any exposed silicon. The device is tested (230) in such a manner that any unacceptable corrosion of the wetted path will cause the device to fail. If the device operates properly, the wetted path is deemed to be resistant to corrosion by fluorine or other corrosive compounds, as applicable.
Abstract:
High-density microfluidic chips contain plumbing networks with thousands of micromechanical valves and hundreds of individually addressable chambers. These fluidic devices are analogous to electronic integrated circuits fabricated using large scale integration (LSI). A component of these networks is the fluidic multiplexor, which is a combinatorial array of binary valve patterns that exponentially increases the processing power of a network by allowing complex fluid manipulations with a minimal number of inputs. These integrated microfluidic networks can be used to construct a variety of highly complex microfluidic devices, for example the microfluidic analog of a comparator array, and a microfluidic memory storage device resembling electronic random access memories.