Abstract:
The invention relates to a bimodal optical spectroscopy device for producing spectra of autofluorescence and diffuse reflectance signals coming from a biological sample such as the skin. The following are identified: an excitation unit made up of a plurality of monochrome light-emitting diodes and a wideband pulsed lamp; a flexible optical probe made up of an excitation optical fibre arranged, on the distal side, at the centre of the flexible optical probe in order, consecutively, to carry the excitation signals from each element of the excitation unit to the biological sample, and a plurality of receiving optical fibres arranged, on the distal side, in the form of concentric circles around the excitation optical fibre in order to carry signals coming from the sample; a detection unit including a plurality of spectrometers, each receiving signals from receiving optical fibres arranged on a single circle in the optical probe; a filter wheel for eliminating excitation signals; and a processing unit for controlling the excitation and detection units and for ensuring synchronisation between said units during measurements.
Abstract:
A system for wide-range spectral measurement includes one or more broadband sources, an adjustable Fabry-Perot etalon, and a detector. The one or more broadband sources is to illuminate a sample, wherein the one or more broadband sources have a short broadband source coherence length. The adjustable Fabry-Perot etalon is to optically process the reflected light to extract spectral information with fine spectral resolution. The detector is to detect reflected light from the sample, wherein the reflected light is comprised of multiple narrow-band subsets of the illumination light having long coherence lengths and is optically processed using a plurality of settings for the adjustable Fabry-Perot etalon, and wherein the plurality of settings includes a separation of the Fabry-Perot etalon plates that is greater than the broadband source coherence length but that is less than the long coherence lengths.
Abstract:
Disclosed are an optical spectroscopy system using a matched filter-based broadband signal receiver for stable data extraction, and a method for controlling the optical spectroscopy system. The optical spectroscopy system may comprise: a light transmission unit for irradiating light on a particular region of a subject by means of a plurality of light sources, wherein the light irradiated from the plurality of light sources is code-modulated by means of the Walsh codes and then irradiated; and a light receiving unit for detecting emergent light which has passed through the particular region, wherein the light source is identified by demodulating the light by means of the Walsh codes.
Abstract:
A small size, robust stimulated Raman scattering (SRS) spectrophotometer system for industrial, medical and field use, exhibiting high SNR, high resolution and very short acquisition times. The architecture of the system allowing for such features comprises three main elements: (1). Use of a narrow range tunable pump laser and an array of fixed wavelength lasers to produce the wavelength differences as required to generate the SRS (Raman) spectrum; (2). Application of analog signal processing, prior to the digital conversion, in order to obtain higher resolution and SNR; (3). Use of relatively inaccurate or unstable laser sources coupled to calibration samples, followed by various calibration methods to compensate for system instabilities, such as wavelength drift, laser inaccuracies, and variations in the optical components/elements of the system.
Abstract:
An interrogation device for detecting luminescent light produced by analytes in a sample excited by multiple excitation light beams each having individual spectral contents, comprising a plurality of light sources each generating an excitation light beam; at least one detector for detecting the luminescent light produced by the sample; and an optical assembly defining distinct and fixed excitation light paths for each of the excitation light beams from the light sources to a common excitation site on the sample and defining a shared luminescence light path for the luminescent light from the excitation site on sample to the at least one detector, the excitation light paths and the luminescence light path being on a same side of the sample, the optical assembly including sample-side optics projecting the excitation light towards the sample and collecting luminescent light from the sample.
Abstract:
The present invention causes measurement light emitted from an object to be measured to enter a fixed mirror unit and a movable mirror unit and forms interference light of measurement light reflected by the fixed mirror unit and measurement light reflected by the movable mirror unit. At this time, a change of the intensity of the interference light of measurement light is obtained by moving the movable mirror unit, and an interferogram of measurement light is acquired based on the change. At the same time, reference light of a narrow wavelength band included in a wavelength band of the measurement light is caused to enter the fixed mirror unit and the movable mirror unit, and interference light of the reference light reflected by the fixed mirror unit and the reference light reflected by the movable mirror unit is formed. At this time, the movable mirror unit is moved to correct the interferogram of measurement light based on an amplitude of the change of the interference light of the reference light and based on a phase difference between measurement light, which is at the same wavelength as the reference light in the measurement light, and the reference light, and a spectrum of the measurement light is acquired based on the corrected interferogram.
Abstract:
A broadband light source includes one or more laser diodes that are capable of generating a pump signal having a wavelength shorter than 2.5 microns, a pulse width of at least 100 picoseconds and a pump optical spectral width. The light source also includes one or more optical amplifiers that are coupled to the pump signal and are capable of amplifying the pump signal to a peak power of at least 500 W. The light source further includes a first fiber that is coupled to the one or more optical amplifiers. The first fiber including an anomalous group-velocity dispersion regime and a modulational instability mechanism that operates to modulate the pump signal. In one particular embodiment, the pump signal wavelength resides in the anomalous group-velocity dispersion regime of the first fiber and where different intensities in the pump signal can cause relative motion between different parts of the modulated pump signal produced through modulational instability in the first fiber. The light source also including a nonlinear element that is coupled to the first fiber that is capable of broadening the pump optical spectral width to at least 100 nm through a nonlinear effect in the nonlinear element.
Abstract:
The present invention discloses a method for performing color measurement using a standard light source color matching observation box. The method comprises: arranging a halogen tungsten lamp and a light filter in the color matching observation box for cooperation, wherein the light ray of the halogen tungsten lamp emits a main body radiation light ray through the light filter; arranging a plurality of narrow-wave LED light sources of different light-emitting wavelengths to emit a compensation light ray; mixing the main body radiation light ray and the compensation light ray in the color matching observation box into a mixed light ray that uniformly simulates a standard D illuminant; and performing a color measurement on a measured object in the color matching observation box by the mixed light ray. After the present invention uses an LED lamp of a different light-emitting wavelength for compensation, the quality of the light source is
Abstract:
A system comprising: a mobile device, comprising: a camera configured to capture multiple images of a subject; a processor configured to identify a first image of the captured images as a blue frame, wherein the image was captured while the subject was illuminated by blue light, and identify a second image of one of the captured images as a white frame, wherein the image was captured while the subject was illuminated by white light; associate the blue frame with the white frame; detect a feature depicted in the blue frame that is not depicted in the associated white frame, indicate the detection of the feature to a user; and a user interface display configured to separately render the blue frame and the white frame.
Abstract:
A method of controlling a spectroscopic module that includes a measurement light source, a variable-wavelength optical filter, a photodiode, and a conversion circuit for converting a drive signal voltage into a gap displacement amount. The spectroscopic module has a reference light source for emitting a reference light beam of a known wavelength. The controlling method involves varying a gap for the incident reference light beam, extracting two maximum points among data output from the photodiode, and updating a first conversion formula provided in the conversion circuit through use of drive signal voltages and gap amounts corresponding to the two points.