Abstract:
A method of forming complex three-dimensional microstructures wherein an external stimulus is applied to a first layer of a photosensitive material, thereby creating voids in the first layer, and any material present in those voids is removed. A sacrificial material is then provided within at least a portion of the voids. This sacrificial layer fills the voids, either in whole or in part, and enables a second layer of photosensitive material to be stacked upon the first, while still preserving the pattern formed in the first layer. Once the sacrificial layer has been applied, a second layer of photosensitive material may then be stacked onto the first. Successive layers of photosensitive material and sacrificial material may be added until a final, complex three-dimensional structure is created. The sacrificial material may then be removed with a solvent such as carbon dioxide.
Abstract:
The present invention relates to a device for interfacing nanofluidic and microfluidic components suitable for use in performing high throughput macromolecular analysis. Diffraction gradient lithography (DGL) is used to form a gradient interface between a microfluidic area and a nanofluidic area. The gradient interface area reduces the local entropic barrier to nanochannels formed in the nanofluidic area. In one embodiment, the gradient interface area is formed of lateral spatial gradient structures for narrowing the cross section of a value from the micron to the nanometer length scale. In another embodiment, the gradient interface area is formed of a vertical sloped gradient structure. Additionally, the gradient structure can provide both a lateral and vertical gradient.
Abstract:
A method for forming a microstructure includes photolithographically forming a vertically extending post on a portion of a surface of a substrate to provide a first structure. A flowable, sacrificial material is deposited over a surface of the first structure. The flowable, sacrificial materially flows off the top surface and sidewall portions of the post onto adjacent portions of the surface of the substrate to provide a second structure. A non-sacrificial material is deposited over a surface of the second structure. The non-sacrificial material is deposited to conform to the surface of the second structure. The non-sacrificial is deposited over the sacrificial material, over the sidewall portions and over the top surface of the post. The deposited sacrificial material is selectively removed while the non-sacrificial material remains to form a third structure with a horizontal member provided by the non-sacrificial material. The horizontal member is supported a predetermined distance above the surface of the substrate by a lower portion of the post. The flowable material is a flowable oxide, for example, hydrogensilsesquioxane glass, and the post has a width less than 20 .mu.m. The resulting structure, formed with a single photolithographic step, is used for supporting a capacitor deposited over it. The capacitor is formed as a sequence of deposition steps; i.e., depositing a first conductive layer over a surface of the support structure; depositing a dielectric layer over the conductive layer; and depositing a second conductive layer over the dielectric layer.
Abstract:
A method for forming a biological microdevice includes applying a biocompatible coarse scale additive process with an additive device and a biocompatible material to form an object. The coarse scale is a dimension not less than about 100 μm. The method also includes applying a biocompatible fine scale subtractive process with a subtractive device to the object. The fine scale is a dimension not greater than about 1000 μm. The method also includes moving the object between the additive device and the subtractive device. A system is also provided for performing the above method and includes the additive device, the subtractive device, a means for transporting the object between the additive device and subtractive device and a processor with a memory including instructions to perform one or more of the above method steps.
Abstract:
The invention is to reduce non-uniformity of a processing shape over a wide range of a single field-of-view.The invention is directed to a method of processing micro electro mechanical systems with a first step and a second step in a processing apparatus including an irradiation unit that irradiates a sample with a charged particle beam, a shape measuring unit that measures a shape of the sample, and a control unit. In the first step, the irradiation unit irradiates a plurality of single field-of-view points with the charged particle beam in a first region of the sample, the shape measuring unit measures the shape of a spot hole formed in the first region of the sample, and the control unit sets, based on measurement results of the shape of the spot hole, a scan condition of the charged particle beam or a forming mask of the charged particle beam at each of the single field-of-view points. In the second step, the irradiation unit irradiates, based on the scan condition or the forming mask set in the first step, a second region of the sample with the charged particle beam.
Abstract:
In a method for synthesizing polymeric microstructures, a monomer stream is flowed, at a selected flow rate, through a fluidic channel. At least one shaped pulse of illumination is projected to the monomer stream, defining in the monomer stream a shape of at least one microstructure corresponding to the illumination pulse shape while polymerizing that microstructure shape in the monomer stream by the illumination pulse. An article of manufacture includes a non-spheroidal polymeric microstructure that has a plurality of distinct material regions.
Abstract:
A MEMS anti-phase vibratory gyroscope includes two measurement masses with a top cap and a bottom cap each coupled with a respective measurement mass. The measurement masses are oppositely coupled with each other in the vertical direction. Each measurement mass includes an outer frame, an inner frame located within the outer frame, and a mass located within the inner frame. The two measurement masses are coupled with each other through the outer frame. The inner frame is coupled with the outer frame by a plurality of first elastic beams. The mass is coupled with the inner frame by a plurality of second elastic beams. A comb coupling structure is provided along opposite sides of the outer frame and the inner frame. The two masses vibrate toward the opposite direction, and the comb coupling structure measures the angular velocity of rotation.
Abstract:
A method for making patterns on the surface of a substrate by graphoepitaxy, includes depositing a layer of resin on the surface of the substrate; making patterns in the resin on the surface of a substrate; curing the patterns in the resin by producing a layer of amorphous carbon on the surface of the patterns in the resin; depositing a layer of statistical copolymer after curing the patterns in the resin; grafting the layer of statistical copolymer onto the patterns in the resin by annealing; and depositing a layer of a block copolymer into the spaces defined by the patterns in the resin after curing the patterns and the grafting of the layer of statistical copolymer.
Abstract:
Methods for fabricating of high aspect ratio probes and deforming micropillars and nanopillars are described. Use of polymers in deforming nanopillars and micropillars is also described.
Abstract:
An optofluidic lithography system including a membrane, a microfluidic channel, and a pneumatic chamber is provided. The membrane may be positioned between a pneumatic chamber and a microfluidic channel. The microfluidic channel may have a height corresponding to a displacement of the membrane and have a fluid flowing therein, the fluid being cured by light irradiated from the bottom to form a microstructure. The pneumatic chamber may induce the displacement of the membrane depending on an internal atmospheric pressure thereof.