Abstract:
An underfill film for an electronic device includes a thermally conductive sheet. The electronic device may include a printed circuit board, an electrical component, an underfill, and the thermally conductive sheet. The underfill is situated between the circuit board and the component. The thermally conductive sheet is situated within the underfill, and together with the underfill, constitutes the underfill film. The device may include solder bumps affixing the component to the circuit board, the underfill film having holes within which the solder bumps are aligned. There may be solder bumps on the underside of the circuit board promoting heat dissipation. There may be heat sinks on the circuit board to which the thermally conductive sheet is affixed promoting heat dissipation. The thermally conductive sheet may be affixed to a chassis promoting heat dissipation. The thermally conductive sheet thus promotes heat dissipation from the component to at least the circuit board.
Abstract:
A technique is disclosed for an optical transceiver, where the frame ground is electrically isolated from the signal ground in a low frequency region and is conducted in a high frequency region, without applying a capacitor as a substantial circuit component. The transceiver includes a TOSA whose housing is grounded with the FG and connected with the driver with a FPC board. On the FPC board is formed with a parallel plate capacitor, one conductive pattern on the one surface is connected with the housing of the TOSA, while the other pattern in the opposite surface is connected with the SG. This parallel plate capacitor isolates the FG from the SG in low frequencies, while conducts the FG with the SG in high frequencies.
Abstract:
An underfill film for an electronic device includes a thermally conductive sheet. The electronic device may include a printed circuit board, an electrical component, an underfill, and the thermally conductive sheet. The underfill is situated between the circuit board and the component. The thermally conductive sheet is situated within the underfill, and together with the underfill, constitutes the underfill film. The device may include solder bumps affixing the component to the circuit board, the underfill film having holes within which the solder bumps are aligned. There may be solder bumps on the underside of the circuit board promoting heat dissipation. There may be heat sinks on the circuit board to which the thermally conductive sheet is affixed promoting heat dissipation. The thermally conductive sheet may be affixed to a chassis promoting heat dissipation. The thermally conductive sheet thus promotes heat dissipation from the component to at least the circuit board.
Abstract:
An electronic device is mounted on a wiring board, which includes: a substrate having through holes, and lands extending on surfaces of the substrate and adjacent to openings of the through holes. Further, at least one coating layer is provided, which coats at least one part of an outer peripheral region of the at least one land, in order to cause that the at least one part is separated from a lead-less solder, thereby preventing any peel of the land from the surface of the substrate.
Abstract:
An electronic device is mounted on a wiring board, which includes: a substrate having through holes, and lands extending on surfaces of the substrate and adjacent to openings of the through holes. Further, at least one coating layer is provided, which coats at least one part of an outer peripheral region of the at least one land, in order to cause that the at least one part is separated from a lead-less solder, thereby preventing any peel of the land from the surface of the substrate.
Abstract:
A method and arrangement for the advantageous assembly of blocking capacitors for an integrated circuit. An integrated circuit includes a BGA housing having a plurality of preferably ball-shaped connector pins. A printed circuit board is also provided, having conductor paths to which the housing of the integrated circuit is electrically and mechanically contacted by means of the connector pins. At least one blocking capacitor is spatially arranged between two connector pins of the housing and also between the printed circuit board and housing of the integrated circuit.
Abstract:
An electrical connector is constructed for ease of fixing a sheet metal solder plate (25) to the bottom surface portion (70) of the connector insulator frame (12), so the solder plate can be soldered to one or more traces on a circuit board to hold down the frame. The frame has downwardly extending pegs (33-35) and the solder plate has corresponding peg-receiving holes (28-30). The mount plate forms at least one tongue (48, 49) at each of its holes, each tongue projecting against one of the pegs to form an interference fit against the peg that prevents removable of the solder plate from the insulator pegs. Each peg has a vertical slot (38, 39) that receives a nose (50, 51) at the end of the tongue.
Abstract:
An RF interconnect is incorporated in RF module packages for direct attachment onto a multi-layer PWB using compressible center conductor (fuzz button) interconnects. The module has circuitry operating at microwave frequencies. The module package includes a metal housing including a metal bottom wall structure. The module includes a plurality of RF interconnects, which provide RF interconnection between the package and the PWB. Each interconnect includes a feedthrough center pin protruding through an opening formed in the metal bottom wall, with isolation provided by a dielectric feedthrough insulator. The center pin is surrounded with a ring of shield pins attached to the external surface of the bottom wall of the module housing. The pins are insertable in holes formed in the PWB, and make contact with fuzz button interconnects disposed in the holes. Circuitry connects the fuzz button interconnects to appropriate levels of the PWB for grounding and RF signal conduction.
Abstract:
A parts-packaging substrate comprising a metal wiring plate having a mask coated on its surface with several openings. This structure eliminates the need for a thick base formed of an insulating body and a resist layer required in prior art substrates. By bending a terminal of the metal wiring plate to form a connecting terminal, a connector used to connect to another substrate can be eliminated, reducing the cost of manufacture.
Abstract:
A chip mounting substrate which comprises inserting holes formed in a substrate for inserting chips in, a sheet provided on the top surface of the substrate to cover the holes and having adhesivity on the inner surface covering the holes, and wiring pattern provided on the back surface of the substrate so as to be associated with electrode portions of the chips inserted in the inserting holes, so that after inserting the chips in the inserting holes to thereby temporarily adhere and fix them by the sheet, the electrode portion of each chip and the associated wiring pattern are soldered and connected together.