Abstract:
Multijunction solar cell structures (100) including high quality epitaxial layers of monocrystalline semiconductor materials that are grown overlying monocrystalline substrates (102) such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers are disclosed. One way to achieve the formation of a compliant substrate includes first growing an accommodating buffer layer (104) on a silicon wafer. The accommodating buffer (104) layer is a layer of monocrystalline material spaced apart from the silicon wafer by an amorphous interface layer (112) of silicon oxide. The amorphous interface layer (112) dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. Multiple and varied accommodating buffer layers can be used to achieve the monolithic integration of multiple non-lattice matched solar cell junctions (302, 304).
Abstract:
High quality epitaxial layers of compound semiconductor materials can be grown overlying large silicon wafers by first growing an accommodating buffer layer on a silicon wafer. The accommodating buffer layer is a layer of monocrystalline oxide spaced apart from the silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer. Radiation systems, including radiation sources such as light emitting diode or lasers and wave guides may be formed in the high quality epitaxial compound semiconductor material and above the oxide layers.
Abstract:
High quality epitaxial layers of monocrystalline materials can be grown overlying monocrystalline substrates (22) such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. One way to achieve the formation of a compliant substrate includes first growing an accommodating buffer layer (24) on a silicon wafer. The accommodating buffer layer is a layer of monocrystalline oxide spaced apart from the silicon wafer by an amorphous interface layer (28) of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying monocrystalline material layer. A monocrystalline graded layer (32), in which the lattice constant varies with the thickness of the layer, is then formed over the accommodating buffer layer, such that a lattice constant of the top of the graded layer substantially matches the lattice constant of a subsequently grown monocrystalline film.
Abstract:
High quality cubic boron nitride layers can be grown overlying monocrystalline substrates (102) such as large silicon wafers by forming a compliant substrate for growing the nitride layer. One way to achieve the formation of a compliant substrate includes first growing an accommodating buffer layer (104) on a silicon wafer (102). The accommodating buffer layer (104) is a layer of monocrystalline oxide spaced apart from the silicon wafer (102) by an amorphous interface layer of silicon oxide (108). The amorphous interface layer (108) dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer (104).
Abstract:
Magnetoresistive materials can be grown overlying a semiconductor substrate (22) by first growing an accommodating buffer layer (24) on a silicon wafer. The accommodating buffer layer is a layer of monocrystalline oxide spaced apart from the silicon wafer by an amorphous interface layer (28) of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer.
Abstract:
High quality epitaxial layers of GaN can be grown overlying large silicon wafers (200) by forming an amorphous layer (210) on the substrate. The amorphous layer dissipates strain and permits the growth of a high quality GaN layer (208). Any lattice mismatch between the GaN layer and the underlying substrate is taken care of by the amorphous layer.
Abstract:
High quality epitaxial layers of monocrystalline materials (26) can be grown overlying monocrystalline substrates (22) such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. One way to achieve the formation of a compliant substrate includes first growing an accommodating buffer layer (24) on a silicon wafer. The accommodating buffer layer is a layer of monocrystalline oxide spaced apart from the silicon wafer by an amorphous interface layer (28) of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying monocrystalline material layer (26). Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer. In addition, formation of a compliant substrate may include utilizing surfactant enhanced epitaxy, epitaxial growth of single crystal silicon onto single crystal oxide, and epitaxial growth of Zintl phase materials.
Abstract:
High quality epitaxial layers of monocrystalline materials can be grown overlying large silicon wafers by first growing an accommodating buffer layer (202) on a silicon substrate (200). The accommodating buffer layer (202) is a layer of monocrystalline material spaced apart from the silicon substrate (200) by an amorphous interface layer (204) of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline accommodating buffer layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer. Utilizing this technique permits the fabrication of semiconductor structures formed by high quality Group III-V nitride films.
Abstract:
High quality epitaxial layers of compound semiconductor materials can be grown overlying large silicon wafers by first growing an accommodating buffer layer (24) on a silicon wafer (22). The accommodating buffer layer is a layer of monocrystalline oxide preferably a perorskite oxide, spaced apart from the silicon wafer by an amorphous interface layer (28) of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer (24). The accommodating buffer layer (24) preferably is lattice matchedto both the underlying silicon wafer (22) and the overlying monocrystalline compound semiconductor layer (26). Any lattice mismatch between the accomodating buffer layer and the underlying substrate is taken care of by the amorphous interface layer. Additionalsemiconductor buffer (32) and template layers (28, 30) can be found on or below the oxide buffer layer (24).