Abstract:
An electronic component has an element, a pair of terminal portions which are disposed on the element, and an external covering material which covers a part of the terminal portions and the element. The electronic component is configured such that inclined portions are disposed on corner portions of a bottom surface and side surfaces of the external covering material, and the terminal portions are protruded from corner portions where the inclined portions and the bottom surface of the external covering material intersect.
Abstract:
The present invention aims to supply an electronic component which is manufactured in a manufacturing process at low cost, and realize improvement of shock resistance, endurance, flexure resistance, mounting reliability etc. at the same time, without requiring fine adjustment etc. The invention is an electronic component 1 which has an element 2, a pair of terminal portions 4 which were disposed on the element 2, and an external covering material 5 which covers the a part of the terminal portions 4 and the element 2, and configured in such a manner that inclined portions 10 are disposed on corner portions of a bottom surface 9 and side surfaces of the external covering material 5, and the terminal portions 4 are protruded from corner portions where the inclined portions 10 and the bottom surface 9 of the external covering material intersect.
Abstract:
A semiconductor package mainly includes a semiconductor chip and a plurality of L-shaped leads arranged at the periphery of the semiconductor chip. Each of the L-shaped leads has an inner lead portion exposed out of the lower surface of the semiconductor package and an outer lead portion formed substantially parallel to and adjacent to one of the side surfaces of the semiconductor package. The semiconductor chip has a plurality of bonding pads electrically coupled to the inner lead portions of the L-shaped leads. The semiconductor package is provided with a package body formed over the semiconductor chip and the inner lead portions of the L-shaped leads.
Abstract:
A blade terminal for a surface mount electrical connector is provided. A first elongate member of a terminal body cooperates with a housing of the electrical connector to secure the terminal body to the connector housing. A second elongate member of the terminal body includes a curved portion having a hole therethrough. The curved portion includes a convex surface that facilitates automated assembly operations, and the aperture helps to overcome surface tension in liquid solder, thereby promoting a secure electrical connection.
Abstract:
A circuit board assembly includes a first circuit board, at least one surface mount connector, and a second circuit board. The first circuit board has at least a first contact. The surface mount connector is substantially a solid rod and includes a first conducting part coupled to the contact of the first circuit board and a second conducting part having a curvy raised portion at the top surface thereof. The second circuit board has at least a second contact coupled to the second conducting part of the surface mount connector.
Abstract:
A semiconductor package mainly includes a semiconductor chip and a plurality of L-shaped leads arranged at the periphery of the semiconductor chip. Each of the L-shaped leads has an inner lead portion exposed out of the lower surface of the semiconductor package and an outer lead portion formed substantially parallel to and adjacent to one of the side surfaces of the semiconductor package. The semiconductor chip has a plurality of bonding pads electrically coupled to the inner lead portions of the L-shaped leads. The semiconductor package is provided with a package body formed over the semiconductor chip and the inner lead portions of the L-shaped leads.
Abstract:
A process for fastening a miniaturized component (2), in particular assembled in a modular manner, on a baseplate (1) by a solder joint is described. A side (4) of the component (2) is coated with a layer (5) of solder material, and the baseplate (1) is at least partly coated with a layer of metal (6, 6′, 6″). The component (2) is arranged above the baseplate (1), the metal layer and the layer (5) of solder material being a vertical distance apart and not in contact with one another. Heat energy is then supplied from the side of the baseplate (1) for melting solder material of the layer (5) of solder material on the side (4) of the component (2) until a drop forms, with the result that the drop (5′) of solder material fills the space between the component (2) and the baseplate (1) for mutual fastening.
Abstract:
A mount 2 is secured on a circuit board 1 to support a diode chip 3 thereon. A plurality of legs 7, 12 formed in the mount 2 are in contact with an electrode 4 on the circuit board 1 to form at least a dent 14. The mount 2 also has an inclined surface 8 formed at the periphery which faces the electrode 4. Solder 9 is filled in the dent 14 between the legs 7, 12 and in the flaring area 13 between the circuit board 1 and the inclined surface 8 of the mount 2 to prevent exfoliation or detachment of the mount from the electrode 4.
Abstract:
A method for producing an electronic part mounting structure in which electronic parts such as IC packages are electrically connected to the surface of a printed circuit board utilizes a low-melting point metal. More particularly, the method provides an electronic part mounting structure capable of sufficiently and assuredly supplying solder to a portion between the terminal of a printed circuit board and the leads of an electric part while maintaining a predetermined thickness required to connect the printed circuit board and the electronic part to each other. By arranging the structure such that a gap, in which a solder layer having a predetermined thickness can be formed between the terminal of the printed circuit board and the lead of the electronic part to be connected to the terminal, is formed, the solder required to solder-connect the two elements can be sufficiently and assuredly supplied to the gap. Therefore, a reliable solder connection can be established.
Abstract:
Spacing elements are integrally formed on the constituent surfaces of conductive interfaces of electronic circuit device components for providing uniform thickness solder or other bonding film between the surfaces. The interfaces may be electrically conductive interfaces such as those defined between leads and substrate contact pads as well as thermally conductive interfaces such as those defined between heat sinks and substrates. Any suitable spacers which maintain the constitutent surfaces a selected distance apart when the components are pressed together may be employed such as edge and corner flanges, convex dimples, annular protrusions, tangs, among others. A tool is disclosed for forming the annular protrusions that is advantageously employed with comparatively thick electronic circuit device components and with laminated electronic circuit device components having a comparatively hard layer.