Abstract:
A portable imaging device comprises: a fixing part for fixing portable photographing equipment; and an optical assembly generating a first light polarized in a first direction and a second light polarized in a second direction vertical to the first direction, irradiating the first and second lights to a target object, and generating a coherent light by combining the first and second lights reflected from the target object. The fixing part comprises an optical window aligned with the optical assembly so that the coherent light can be entered into the photographing equipment. The device can observe minutely transparent or untransparent matters by observing the phase difference between the two lights polarized in different directions. The device can be portable, so it can easily observe at desired locations.
Abstract:
그래핀(graphene) 내 PN 접합형성방법은, 그래핀층을형성하는단계; 및상기그래핀층의일부영역에, 상기그래핀층에흡착되었을때 상기그래핀층에미리결정된도핑특성을부여하도록설계된염기배열구조를갖는 DNA 분자층을형성하는단계를포함할수 있다. 그래핀이특정반도체특성을갖도록도핑시키도록염기배열구조가설계된 DNA 분자를마이크로패터닝에의해일부영역이노출된그래핀층 표면에코팅함으로써, 그래핀층에서 DNA 분자가코팅된영역과코팅되지않은영역에의해다양한구조의 PN 접합을형성할수 있다.
Abstract:
The present invention relates to an optical logic circuit and a method for generating logic signals using a DNA-based nanostructure. The optical logic circuit includes: a DNA-based nanostructure including a DNA and a metal nanoparticle coupled with the DNA, and to rotate a polarized surface of incident light; a polarizer which receives light transmitted through the DNA-based nanostructure, and extracts a component of a predetermined reference axis direction from light in which the polarized surface is rotated by the DNA-based nanostructure; and a detector which receives the light transmitted through the polarizer and generates a logic signal based on a comparison result of a size of a component of the reference axis direction extracted from the polarizer with a predetermined threshold value. The optical logic circuit is implemented based on a rotating characteristic of a polarized surface of the DNA-based nanostructure and may perform optical logic calculation using light having weak intensity. An advantage of optical calculation having rapid information process may be implemented so that a low power information processing technology advantageous for an energy user efficiency side is expected.Further, circuit elements may be designed to have a very small size of 10-9 m to represent excellent miniaturization and integration.
Abstract:
A photoluminescence wavelength tunable material comprises a composite including a graphene oxide layer and metal nanoparticles attached on the graphene oxide layer. The photoluminescence wavelength of the graphene oxide (color of emitted light) can be tuned while a structure and physical properties of the graphene oxide is maintained by boding the metal nanoparticles to the graphene oxide. The photoluminescence wavelength tunable material can be applied to an energy harvesting element such as a solar cell with low loss and high efficiency.
Abstract:
An optical switch may include a graphene layer to which incident light is applied; and a pump optical source for adjusting the transmittance of the incident light to the graphene layer by selectively applying pump light to the graphene layer. The incident light does not saturate the Fermi level of the graphene layer. The pump optical source determines the power of the pump light to allow the pump light to increase the Fermi level of the graphene layer to be higher than the energy level of the incident light. The optical switch changes the optical absorption of the graphene layer by adjusting lights applied to the graphene layer; and enables rapid control for lights in comparison with a conventional electronic control system.