Abstract:
본 발명은 탄소원으로 수크로오스와 글리세롤을 동시에 이용가능한 숙신산 생산 변이미생물에 관한 것으로, 더욱 자세하게는 숙신산 생성 미생물에 있어서, 수크로오즈에 의한 글리세롤의 이화산물 저해기작을 약화시켜, 숙신산 생산에 수크로오즈와 글리세롤을 동시에 이용가능한 변이 미생물에 관한 것이다. 본 발명에 따른 숙신산 생성 변이미생물을 배양하면, 수크로오스와 글리세롤을 동시에 이용하여, 숙신산 생산에 있어 종래의 발효 수율을 이론수율 근방으로 최대화하고 부산물을 최소화 하면서 높은 생산성으로 숙신산을 생산할 수 있다.
Abstract:
본발명은전동식파워스티어링용모터의외란보상시스템에관한것으로서, 더욱상세하게는폐루프기반의입력값예측모델부를기반으로외란보상이이루어지도록한 전동식파워스티어링용모터의외란보상시스템에관한것이다. 즉, 본발명은폐루프기반의입력값예측모델부에서지령(전류지령값)으로부터입력값(모터에입력되는전압값)을별도로예측하고, 이예측된입력값이피드백제어부에서에러보상된입력값과차이가존재하는경우, 원하는외란주파수대역에맞는외란보상이이루어지도록한 전동식파워스티어링용모터의외란보상시스템을제공하고자한 것이다.
Abstract:
PURPOSE: A mutant microorganism which produces succinic acid is provided to maximize fermentation yield and to minimize by-products. CONSTITUTION: A mutant microorganism uses sucrose and glycerol to produce succinic acid by weakening catabolic product suppressing metabolism of glycerol. The microorganism is lumen bacteria. The lumen bacteria are Mannheimia sp., Actinobacillus sp., or Anaerobiospirillum sp. Mannheimia sp. is Mannheimia succiniciproducens PALK(KCTC10973BP). A method for preparing succinic acid comprises: a step of culturing the mutant microorganism under anaerobic condition; and a step of collecting succinic acid from the culture liquid.
Abstract:
PURPOSE: A transceiving method in a multiple antenna system for reducing necessary computational complexity in selection or the quantization of a coding word is provided to remove interference between multi users by quantizing error. CONSTITUTION: A transmitter receives a codebook index from a plurality of terminals(300). The transmitter selects the k terminal of a plurality of terminals(302). The transmitter generates the precoder matrices P put through to the codebook index of the selected terminal(304). The transmitter performs precoding(306). The transmitter transmits the transmission signal of which the precoding is performed for the first time slot(308).
Abstract:
PURPOSE: A dual gate FinFET device and a fabricating method thereof are provided to reduce fabricating cost and parasitic resistance by using a bulk wafer and forming an epitaxial layer on a source/drain. CONSTITUTION: A dual gate FinFET device includes a bulk silicon substrate(2b), a Fin active region(4), the second oxide layer(10), a gate oxide layer, the first oxide layer(6), a gate(16), a source/drain, a contact region, and a metal layer. The Fin active region is formed on the center portion of an upper portion of the bulk silicon substrate. The second oxide layer is formed on the surface of the bulk silicon substrate. The gate oxide layer is formed at both sidewalls of the Fin region of the second oxide layer. The first oxide layer is formed on an upper surface of the Fin active region. The gate is formed on the first and the second oxide layers. The source/drain is formed at both sides of the Fin active region except for an overlapped part between the gate and the Fin active region. The contact region and the metal layer are formed on the contact part of the source, the drain, and the gate.
Abstract:
PURPOSE: A method for fabricating a metal-oxide-semiconductor(MOS) transistor having an ultra-small channel is provided to reduce a short channel effect, by electrically making an inversion layer connected to a source/drain by a conductive layer pattern so that the inversion layer plays the role of the source/drain. CONSTITUTION: A gate pattern where a gate insulation layer, a main gate and a capping layer are sequentially stacked is formed on a p-type semiconductor substrate(110). A separating insulation layer is formed on the entire surface of the resultant structure having the gate pattern. A material layer for a side surface gate which has a work function lower than that of the p-type semiconductor substrate and the main gate is formed on the separating insulation layer. The material layer for the side surface gate and the separating insulation layer are anisotropically etched to expose the semiconductor substrate and the capping layer and to form a separating insulation layer pattern and the side surface gate. An n-type source/drain(190b) is formed. The conductive layer pattern which connects the side surface gate adjacent to the source and/or the drain with the side surface gate adjacent to the drain, is formed on the resultant structure.
Abstract:
PURPOSE: A method for manufacturing a lateral field emission display device is provided to form a cathode pattern, an anode pattern, and a gate pattern as one mask by using an electron beam lithography process. CONSTITUTION: A conductive layer is formed on a substrate including an insulating layer. The conductive layer is formed as the first conductive layer pattern, the second conductive layer pattern, and the third conductive layer pattern by performing a lithography process. The first conductive layer pattern forms a cathode electrode(11). The second conductive layer pattern forms an anode electrode(12). The third conductive layer pattern forms a gate electrode(13,13').
Abstract:
본 발명은 전자선 리소그래피를 이용하여 한 장의 마스크로 캐소드, 에노드, 게이트 전극을 형성시킬 수 있어, 제조공정을 단순화시킨 측면형 전계방출소자의 제조방법을 제공하는데 그 목적이 있다. 본 발명에 따르면, 전계방출소자의 제조방법에 있어서, 그 표면에 절연막이 형성된 기판상에 전도막을 형성하는 단계와; 전자선 리소그래피 공정을 통해 상기 전도막을 캐소드 전극 형성을 위한 제1전도막 패턴과, 에노드 전극 형성을 위한 제2전도막 패턴 및, 게이트 전극 형성을 위한 제3전도막 패턴으로 형성하는 단계 및: 상기 캐소드, 에노드, 게이트 전극의 팁을 미세 간격으로 형성하기 위해 상기 형성된 패턴에 열 산화를 수행하는 단계를 포함하며, 상기 제1전도막 내지 제3전도막의 패턴 형상은, 상기 캐소드 전극의 제1전도막과 상기 에노드 전극의 제2전도막이 상호 대향되고, 상기 게이트 전극의 제3전도막은 상호 대향되게 한 쌍을 구비하되, 상기 제1전도막과 상기 제2전도막의 접점은 상기 후속 단계를 통해 임의의 수 나노 스케일의 간격이 형성될 수 있도록 미세 구조로 형성하고, 상기 한 쌍의 제3전도막은 가능한 한 상기 제1전도막과 제2전도막의 접점에 가깝도 록 형성하는 것을 특징으로 하는 전계방출소자의 제조방법이 제공된다.
Abstract:
A method for precoding based lattice reduction using list quantizer in multiple antenna system and apparatus thereof are provided to obtain maximum performance like function of a sphere coder algorithm of low-complexity by analyzing quantum error pattern. A method for precoding based lattice reduction using list quantizer in multiple antenna system comprises the following steps: a step for inputting a symbol stream data for transmitting to a plurality of terminals; a step for coping an inputted symbol data as one or more identical stream data; a step for generating transmission signals mapped to a quantized signal made by a quantizing error pattern from an identical symbol stream data; and a step for selecting the smallest power value from among transmission signals.
Abstract:
The present invention provides a flash memory element and its manufacturing method having improved overall memory characteristics by constituting a double-gate element for improving the scaling down characteristic of flash memory element. A flash memory element comprises: a first oxide film formed on a surface of a silicon substrate; a fin active area vertically formed on the first oxide film; a gate tunneling oxide film formed on the fin active area; a floating electrode formed on the surfaces of the gate tunneling oxide film and the first oxide film; a inter-gates oxide film formed on the surface of the floating electrode; and a control electrode formed on the surface of the inter-gates oxide film. With the above double-gate flash memory structure, a flash memory element in the present invention improves the scaling down characteristic and the programming and retention characteristic of a flash memory element.