Abstract:
A method for producing a semiconductor device having semiconductor layers of SiC with at least three doped layers on top of each other comprises: a step a) of growing a first semiconductor layer (1) of SiC; a step b) following on step a) of implanting an impurity dopant into said first layer for forming a second doped surface layer (3) as a sub-layer therein; and a step c) following upon step b) and in which a third semiconductor layer (4) of SiC is epitaxially grown on top of said second layer of SiC.
Abstract:
A method for producing a crystalline layer of SiC having at least a region thereof doped with boron atoms comprises a step a) of ion implantation of boron into a layer (1) of crystalline SiC and a step b) of heating the SiC-layer for annealing it for making the boron implanted therein electrically active. The method further comprises a step c) of implanting carbon atoms in said layer (1) for forming carbon interstitials in excess with respect to carbon vacancies present in the SiC-layer before carrying out step b).
Abstract:
A method for producing a crystalline layer of SiC having at least a region thereof doped with boron atoms comprises a step a) of ion implantation of boron into a layer (1) of crystalline SiC and a step b) of heating the SiC-layer for annealing it for making the boron implanted therein electrically active. The method further comprises a step c) of implanting carbon atoms in said layer (1) for forming carbon interstitials in excess with respect to carbon vacancies present in the SiC-layer before carrying out step b).
Abstract:
A method for producing a crystalline layer of SiC having at least a region thereof doped with boron atoms comprises a step a) of ion implantation of boron into a layer (1) of crystalline SiC and a step b) of heating the SiC-layer for annealing it for making the boron implanted therein electrically active. The method further comprises a step c) of implanting carbon atoms in said layer (1) for forming carbon interstitials in excess with respect to carbon vacancies present in the SiC-layer before carrying out step b).
Abstract:
A method for producing a semiconductor device having semiconductor layers of SiC with at least three doped layers on top of each other, comprises the steps of growing a first semiconductor layer of SiC; implanting an impurity dopant into the first layer to form a second doped surface layer as a sub-layer therein, the second doped surface layer being surrounded, except for the top surface thereof, by the first semiconductor layer; and epitaxially growing a third semiconductor layer of SiC on top of the second layer of SiC and regions of the first layer adjacent thereto to totally bury the second semiconductor layer. The impurity dopant implanted into the first semiconductor layer is of a first conductivity n or p type, and the first semiconductor layer being doped with a second, opposite conductivity type, so as to form a pn-junction at the interface between the first and second layers.
Abstract:
A method for producing a semiconductor device comprising a step a) of implanting an impurity dopant of a first conductivity type into said semiconductor layer (1) being doped according to a second opposite conductivity type for forming a first type doped surface layer (2) surrounded, except for the top surface thereof, by second conductivity type doped regions (3) of said semiconductor layer for forming a pn-junction (4) at the interface thereto. A highly doped additional semiconductor layer (5) is grown on top of said surface layer (2) for forming a contact layer allowing a low resistance ohmic contact to be established to the device so created.