Abstract:
A computer system having separate, yet compatible DMA controllers on a bus. Each DMA controller for controlling at least one DMA channel, each DMA controller having an independent set of registers for performing DMA operations and a configuration register for indicating channel status and designation. A DMA master for compatibly communicating with a processor and for initializing and communicating with the multiple DMA controllers.
Abstract:
A memory controller for a computer system provides a series of queues between the processor and a PCI bus and the memory system. Memory coherency is maintained in two different ways. Before any read operations are accepted from the PCI bus, both of the posting queues must be empty. A content addressable memory (CAM) is utilized as the PCI-to-memory queue. When the processor performs a read request, the CAM is checked to determine if one of the pending write operations in the PCI-to-memory queue is to the same address as the read operation of the processor. If so, the read operation is not executed until the PCI-to-memory queue is cleared of the write. To resolve the problem of aborting a Memory Read Multiple operation, an abort signal from the PCI bus interface is received and as soon thereafter as can be done the read ahead cycle is terminated, even though the read ahead cycle has not fully completed. The memory controller has improved prediction rules based on whether the cycle is coming from the processor or is coming from the PCI bus to allow more efficient precharging when PCI bus cycles are used. The memory controller is highly programmable for multiple speeds and types of processors and several speeds of memory devices. The memory controller includes a plurality of registers that specify number of clock periods for the particular portions of a conventional dynamic random access memory cycle which are used to control state machine operations.
Abstract:
A circuit is described for placing an external or L2 cache memory into low power mode in response to certain special cycles executed by a microprocessor. In particular, the special cycles may be the stop grant acknowledge special cycle and the halt special cycle. The microprocessor executes the stop grant acknowledge special cycle in response to a request by the computer system to slow down its clock. This request is asserted by the computer system if the system has been idle for a predetermined period of time. The halt special cycle is generated by the microprocessor when a HALT instruction is executed. The stop grant acknowledge and halt special cycles place the microprocessor into a low power state. Since the microprocessor is in low power mode, the L2 cache memory is also placed into low power mode for further power conservation. The L2 cache memory is implemented either with synchronous or asynchronous static random access memories (SRAMs). To place a synchronous SRAM into low power mode, its address strobe input is asserted while its chip select input is deasserted. For an asynchronous SRAM, deasserting its chip select input causes the SRAM to transition into low power mode.
Abstract:
A memory controller for a computer system provides a series of queues between the processor and a PCI bus and the memory system. Memory coherency is maintained in two different ways. Before any read operations are accepted from the PCI bus, both of the posting queues must be empty. A content addressable memory (CAM) is utilized as the PCI-to-memory queue. When the processor performs a read request, the CAM is checked to determine if one of the pending write operations in the PCI-to-memory queue is to the same address as the read operation of the processor. If so, the read operation is not executed until the PCI-to-memory queue is cleared of the write. To resolve the problem of aborting a Memory Read Multiple operation, an abort signal from the PCI bus interface is received and as soon thereafter as can be done the read ahead cycle is terminated, even though the read ahead cycle has not fully completed. The memory controller has improved prediction rules based on whether the cycle is coming from the processor or is coming from the PCI bus to allow more efficient precharging when PCI bus cycles are used. The memory controller is highly programmable for multiple speeds and types of processors and several speeds of memory devices. The memory controller includes a plurality of registers that specify number of clock periods for the particular portions of a conventional dynamic random access memory cycle which are used to control state machine operations.
Abstract:
A circuit is described for placing an external or L2 cache memory into low power mode in response to certain special cycles executed by a microprocessor. In particular, the special cycles may be the stop grant acknowledge special cycle and the halt special cycle. The microprocessor executes the stop grant acknowledge special cycle in response to a request by the computer system to slow down its clock. This request is asserted by the computer system if the system has been idle for a predetermined period of time. The halt special cycle is generated by the microprocessor when a HALT instruction is executed. The stop grant acknowledge and halt special cycles place the microprocessor into a low power state. Since the microprocessor is in low power mode, the L2 cache memory is also placed into low power mode for further power conservation. The L2 cache memory is implemented either with synchronous or asynchronous static random access memories (SRAMs). To place a synchronous SRAM into low power mode, its address strobe input is asserted while its chip select input is deasserted. For an asynchronous SRAM, deasserting its chip select input causes the SRAM to transition into low power mode.