Abstract:
In-plane uniformity of buff processing is improved. According to a first form, a buff processing device for executing buff processing of a substrate is provided. Such buff processing device has a rotatable shaft, a buff head body, a torque transmission mechanism for transmitting rotation of the shaft to the buff head body, and an elastic member for elastically supporting the buff head body in a longitudinal direction of the shaft.
Abstract:
A substrate cleaning apparatus comprises: a cleaning member 11,21 that comes into contact with a substrate W and cleans the substrate W; a member rotating unit 15, 25 that rotates the cleaning member 11, 21; a pressing drive unit 19, 29 that presses the cleaning member 11, 21 against the substrate W; a torque detecting unit 16, 26 for detecting torque applied to the member rotating unit 15, 25; and a control unit 50 that controls pressing force on the basis of a result of detection by the torque detecting unit 16, 26.
Abstract:
An apparatus for processing a substrate is disclosed. The apparatus includes a polishing section configured to polish a substrate, a transfer mechanism configured to transfer the substrate, and a cleaning section configured to clean and dry the polished substrate. The cleaning section has plural cleaning lines for cleaning plural substrates. The plural cleaning lines have plural cleaning modules and plural transfer robots for transferring the substrates.
Abstract:
A substrate cleaning apparatus and related apparatuses/methods are disclosed. In one embodiment, a substrate cleaning apparatus includes: a first spindle group including a first driving spindle having a first driving roller configured to rotate a substrate and an idler spindle having a driven roller rotated by the substrate; a second spindle group including a plurality of second driving spindles each having a second driving roller configured to rotate the substrate; a cleaning mechanism configured to clean the substrate rotated by the first driving roller and the plurality of second driving rollers; and a rotation detector configured to detect the rotational speed of the driven roller. The driven roller is positioned on the opposite side to a direction in which the substrate receives a force from the cleaning mechanism.
Abstract:
A substrate cleaning apparatus for bringing an elongated roll cleaning member into sliding contact with a flat plate type substrate to perform cleaning processing on the substrate includes a roll holder for supporting the roil cleaning member so that the roll cleaning member is rotatable, an elevating mechanism that has a linking member for supporting the roll holder, and moves the roll holder up and down so that the roll cleaning member applies a predetermined roll load to the substrate, a sensor member that is provided to the linking member and measures frictional force between the roll cleaning member and the substrate, and a controller for performing feedback control on the frictional force between the roll cleaning member and the substrate based on a measured value of the sensor member.
Abstract:
A substrate processing apparatus can prevent photo-corrosion of, e.g., copper interconnects due to exposure of a surface to be processed of a substrate to light, and can perform processing, such as cleaning, of a substrate surface while preventing photo-corrosion of, e.g., copper interconnects due to exposure to light. The substrate processing apparatus includes a plurality of processing areas housing therein processing units which have been subjected to light shielding processing; and at least one transfer area housing therein a transfer robot and disposed between two adjacent ones of the plurality of processing areas. A light shielding wall is provided between the transfer area and each of the two adjacent processing areas, and a light-shielding maintenance door is provided for the front opening of the transfer area. The processing units are coupled to the light shielding walls in a light-shielding manner.
Abstract:
The present disclosure provides a substrate processing apparatus capable of adjusting a flow rate of a liquid to be ejected from a nozzle. The substrate processing apparatus according to the present disclosure is a substrate processing apparatus including a nozzle configured to supply a liquid to a substrate, and a liquid supplier configured to supply the liquid to the nozzle, in which the liquid supplier includes a supply pipe which is configured to cause a liquid supply source and the nozzle to be in fluid communication and which has a first pipe constituting a first flow channel from a splitting point to a joining point located downstream of the splitting point and a second pipe constituting a second flow channel from the splitting point to the joining point, a first valve attached to the first pipe, a second valve attached to the second pipe, and a fluid resistance element attached to the second pipe and configured to set a pressure loss of the liquid flowing through the second pipe to be larger than a pressure loss of the liquid flowing through the first pipe.
Abstract:
A cleaning device includes: a plurality of rollers that hold a peripheral edge part of a substrate; a rotation driving unit that rotates the substrate by rotationally driving the plurality of rollers; a cleaning member that abuts on the substrate and cleans the substrate; a cleaning liquid supply nozzle that supplies a cleaning liquid to the substrate; a microphone that detects a sound generated when a notch of the peripheral edge part of the substrate hits the plurality of rollers; and a rotation speed calculation unit that calculates a rotation speed of the substrate on the basis of the sound detected by the microphone.
Abstract:
The present invention relates to a damper control system and a damper control method for controlling an opening degree of an exhaust damper connected to an exhaust duct. The damper control system (300) includes an exhaust damper (310), a first pressure sensor (311), and a controller (315) configured to control an opening degree of the exhaust damper (310). The controller (315) is configured to switch the opening degree of the exhaust damper (310) to an opening degree smaller than a full opening on condition that a shutter (217) is opened.
Abstract:
An apparatus for processing a substrate is disclosed. The apparatus includes a polishing section configured to polish a substrate, a transfer mechanism configured to transfer the substrate, and a cleaning section configured to clean and dry the polished substrate. The cleaning section has plural cleaning lines for cleaning plural substrates. The plural cleaning lines have plural cleaning modules and plural transfer robots for transferring the substrates.