Abstract:
A method for controlling bow in wafers (50) which utilize doped layers is described. The method includes depositing a silicon-germanium layer (52) onto a substrate (14), depositing an undoped buffer layer (56) onto the silicon-germanium layer, and depositing a silicon-boron layer (58) onto the undoped layer.
Abstract:
A method for fabricating a MEMS device (300) having a top cap (250) and an upper sense plate is described. The method includes producing (152) a device wafer (230) including an etched substrate (186), etched MEMS device components, and interconnect metal (198,200), a portion of the interconnect metal being bond pads (132) and adding (154) a metal wraparound layer (232) to a back side (330), edges (320), and a portion of a front side (342) of the device wafer. The method also includes producing (156) an upper wafer including an etched substrate and interconnect metal, bonding (160) the device wafer and the upper wafer, and dicing (164) the bonded upper wafer and device wafer into individual MEMS devices.
Abstract:
An elongated robotic member that is simple in design and structure, relatively inexpensive and consumes little power. In one illustrative embodiment, one or more linear actuators (4) are used in conjunction with two or more plates (8) that are fixed at spaced locations along a spine member (6). Fixed between each pair of plates is one or more actuators, which when activated, pull or push corresponding portions of the plates towards or away from each other. This changes the relative orientation of the plate pairs, thus providing a bending movement. The spine preferably is flexible at least in the lateral direction, and bends in response to the relative movement of the plates. A number of plate pairs may be provided to create an arbitrarily long robotic member.
Abstract:
Layers of boron-doped silicon (36) having reduced out-of-plane curvature are disclosed. The layers have substantially equal concentrations of boron near th etop (38) and bottom (40) surfaces. Since the opposing concentrations are substantially equal, the compressive stresses on the layers (36) are substantially balanced, thereby resulting in layers (36) with reduced out-of-plane curvature.
Abstract:
An approach where items of different temperatures are bonded to each other such that upon cooling down they contract in size resulting in zero residual stress between the bonded items at an ambient temperature. If materials of the bonded items have different thermal expansion coefficients and the items are put together at different bonding temperatures, then they may have insignificant residual stress upon cooling down to the ambient temperature (e.g., room temperature) because the different ranges of the temperature drops compensate for the different contractions.
Abstract:
A microelectromechanical device is formed in a silicon semiconductor substrate. A metalization layer is formed on a glass wafer. A metal cap layer is then formed on the metalization layer, such that combined layers have a small surface work function that is less than approximately 5.17 eV. The semiconductor substrate is anodically bonded to the glass wafer, and then etched to remove silicon from the structures without significant excess etching of the microelectromechanical device, thus maintaining good control over critical dimensions of the microelectromechanical device.
Abstract:
A method of making a silicon micromechanical structure, from a lightly doped silicon substrate having less than cm boron therein. A p+ layer having a boron content of greater than 7 x 10 cm and a germanium content of about 1 x 10 cm is placed on the substrate. A mask is formed on the second side, followed by etching to the p+ layer. An insulator is put on the p+ layer and an electronic component is fabricated thereon. Preferred micromechanical structures are pressure sensors, cantilevered accelerometers, and dual web biplane accelerometers. Preferred electronic components are dielectrically isolated piezoresistors and resonant microbeams. The method may include the step of forming a lightly doped layer on the p+ layer to form a buried p+ layer prior to etching.
Abstract translation:从其中具有小于5×10 19 cm 3的硼的轻掺杂硅衬底制造硅微机械结构的方法。 具有大于7×10 19 cm -3的硼含量和约1×10 21 cm -3的锗含量的p +层被放置在衬底上。 在第二面上形成掩模,然后蚀刻到p +层。 将绝缘体放在p +层上,并在其上制造电子部件。 优选的微机械结构是压力传感器,悬臂加速度计和双网双平面加速度计。 优选的电子部件是介电离子压敏电阻器和共振微束。 该方法可以包括在p +层上形成轻掺杂层以在蚀刻之前形成掩埋的p +层的步骤。
Abstract:
A microcathode which integrates both an electron emitter, or cathode, and an extractor electrode. The electron emitter is attached to the back side of a thin film microstructure on a first surface of a substrate. Electrons are emitted from the electron emitter and into a via extending through the substrate. An electron beam is formed which is pulled through the via and out of the microcathode by an extractor electrode on a second surface of the substrate. The extractor electrode modulates the electron beam current, defines the beam profile, and accelerates the electrons toward an anode located outside of the microcathode. Microcathode of this invention are particularly suitable as electron emitting devices useful for various types of electron beam utilizing equipment such as flat cathode ray tube displays, microelectronic vacuum tube amplifiers, electron beam exposure devices and the like.
Abstract:
A low cost, pendulous, capacitive-sensing Micro Electro-Mechanical Systems (MEMS) accelerometer is provided. The accelerometer includes a pendulous proof mass, one or more securing pads, and one or more flexures coupled with the pendulous proof mass and the one or more securing pads. The flexures flex linearly with respect to motion of the pendulous proof mass. First and second capacitor plates are positioned relative to the pendulous proof mass for detecting motion of the proof mass according to a sensed difference in capacitance. One or more strain isolation beams are connected between the one or more flexures and the pendulous proof mass or the securing pads. The strain isolation beams protect the flexures from mechanical strain.
Abstract:
A method for fabricating a MEMS device having a top cap and an upper sense plate is described. The method includes producing a device wafer including an etched substrate, etched MEMS device components, and interconnect metal, a portion of the interconnect metal being bond pads and adding a metal wraparound layer to a back side, edges, and a portion of a front side of the device wafer. The method also includes producing an upper wafer including an etched substrate and interconnect metal, bonding the device wafer and the upper wafer, and dicing the bonded upper wafer and device wafer into individual MEMS devices.