Abstract:
A method and incorporated hybrid air and liquid cooled module for cooling electronic components of a computing system is disclosed. The module is used for cooling electronic components and comprise a closed loop liquid cooled assembly in thermal communication with an air cooled assembly, such that the air cooled assembly is at least partially included in the liquid cooled assembly.
Abstract:
A composite interface and methods of fabrication are provided for coupling a cooling assembly to an electronic device. The interface includes a plurality of thermally conductive wires formed of a first material having a first thermal conductivity, and a thermal interface material at least partially surrounding the wires. The interface material, which thermally interfaces the cooling assembly to a surface to be cooled of the electronic device, is a second material having a second thermal conductivity, wherein the first thermal conductivity is greater than the second thermal conductivity. At least some wires reside partially over a first region of higher heat flux and extend partially over a second region of lower heat flux, wherein the first and second regions are different regions of the surface to be cooled. These wires function as thermal spreaders facilitating heat transfer from the surface to be cooled to the cooling assembly.
Abstract:
Es wird eine Kühlvorrichtung bereitgestellt, die eine oder mehrere kühlmittelgekühlte Anordnungen, die an einer oder mehreren Elektronikkomponenten befestigt sind, eine oder mehrere Kühlmittelleitungen, sowie einen oder mehrere Kühlmittelverteiler aufweist. Die kühlmittelgekühlte(n) Anordnung(en) weist/weisen einen oder mehrere Kühlmittel transportierende Kanäle auf, und der Kühlmittelverteiler weist einen oder mehrere drehbare Verteilerabschnitte auf. Eine Kühlmittelleitung verbindet mittels Flüssigkeitsübertragung einen jeweiligen drehbaren Verteilerabschnitt mit dem/den Kühlmittel transportierenden Kanal/Kanälen einer jeweiligen kühlmittelgekühlten Anordnung. Der jeweilige drehbare Verteilerabschnitt ist in Bezug auf einen anderen Abschnitt des Kühlmittelverteilers drehbar, um ein Lösen der kühlmittelgekühlten Anordnung von ihrer dazugehörigen Elektronikkomponente zu ermöglichen, während die kühlmittelgekühlte Anordnung über die eine Kühlmittelleitung in Flüssigkeitsübertragung mit dem jeweiligen drehbaren Verteilerabschnitt gehalten wird, bei der es sich in einer Ausführungsform um eine im Wesentlichen steife Kühlmittelleitung handelt.
Abstract:
A cooling system includes a facility cooling unit, a cooling tower, and o ne or more thermal capacitor units. The facility cooling unit, which include s a heat dissipation coolant loop, facilitates thermal energy extraction fro m a facility, such as a data center, for expelling of the energy to coolant within the heat dissipation coolant loop. The cooling tower is in fluid comm unication with the coolant loop, and includes a liquid-to-air heat exchanger for expelling thermal energy from coolant of the heat dissipation coolant l oop to the surrounding environment. The thermal capacitor unit is in fluid c ommunication with the heat dissipation coolant loop to facilitate efficient thermal energy transfer from coolant with in the coolant loop to the surroun ding environment with variation in ambient temperature about the cooling tow er.
Abstract:
A cooling apparatus is provided which includes one or more coolant-cooled structures attached to one or more electronic components, one or more coolant conduits, and one or more coolant manifolds. The coolant-cooled structure(s) includes one or more coolant-carrying channels, and the coolant manifolds includes one or more rotatable manifold sections. One coolant conduit couples in fluid communication a respective rotatable manifold section and the coolant-carrying channel(s) of a respective coolant- cooled structure. The respective rotatable manifold section is rotatable relative to another portion of the coolant manifold to facilitate detaching of the coolant-cooled structure from its associated electronic component while maintaining the coolant-cooled structure in fluid communication with the respective rotatable manifold section through the one coolant conduit, which in one embodiment, is a substantially rigid coolant conduit.
Abstract:
A cooling approach is provided for one or more subsystems of an electronics rack. The cooling approach employs a coolant distribution unit and a thermal dissipation unit. The coolant distribution unit has a first heat exchanger, a first cooling loop and a second cooling loop. The first cooling loop passes facility coolant through the first heat exchanger, and the second cooling loop provides system coolant to an electronics subsystem, and expels heat in the first heat exchanger from the subsystem to the facility coolant. The thermal dissipation unit is associated with the electronics subsystem and includes a second heat exchanger, the second cooling loop, and a third cooling loop. The second cooling loop provides system coolant to the second heat exchanger, and the third cooling loop circulates conditioned coolant within the electronics subsystem and expels heat in the second heat exchanger from the electronics subsystem to the system coolant.
Abstract:
Kühleinheit, aufweisend: wenigstens eine Wärmeabführeinheit, die so konfiguriert ist, dass sie Wärme von einem Kühlmittel an die Luft abführt, das durch einen Kühlmittelkreislauf hindurchfließt und dabei durch die wenigstens eine Wärmeabführeinheit hindurchfließt, wobei die wenigstens eine Wärmeabführeinheit wenigstens eine Wärmetauscherbaugruppe aufweist, die mit dem Kühlmittelkreislauf verbunden ist, so dass wenigstens ein Teil des Kühlmittels durch ihn hindurchfließen kann, wobei eine Wärmetauscherbaugruppe der wenigstens einen Wärmetauscherbaugruppe der wenigstens einen Wärmeabführeinheit drehbar auf einer Tragvorrichtung montiert ist, und wobei die Kühleinheit des Weiteren einen Controller aufweist, der verbunden ist, um wenigstens einen Abschnitt der einen Wärmetauscherbaugruppe in Reaktion auf eine Änderung der Umgebungsluftstromrichtung an der einen Wärmetauscherbaugruppe automatisch zu drehen, um Abführen von Wärme, die über die eine Wärmetauscherbaugruppe strömt, an die Luft zu ermöglichen; und einen erhöht angeordneten Kühlmittelbehälter, der mittels Flüssigkeitsübertragung mit der wenigstens einen Wärmetauscherbaugruppe der wenigstens einen Wärmeabführeinheit verbunden ist, wobei der erhöht angeordnete Kühlmittelbehälter Rückführen des Kühlmittels an den Kühlmittelkreislauf bei einem im Wesentlichen konstanten Druck ermöglicht, wobei der erhöht angeordnete Kühlmittelbehälter über wenigstens einem Abschnitt des Kühlmittelkreislaufes erhöht angeordnet ist.
Abstract:
A cooling unit (500) is provided to facilitate cooling of coolant passing through a coolant loop (501). The cooling unit (500) includes one or more heat rejection units (510a, 510b) and an elevated coolant tank (520). The heat rejection unit (510a, 510b) rejects heat from coolant passing through the coolant loop (501) to air passing across the heat rejection unit (510a, 510b). The heat rejection unit (510a, 510b) includes one or more heat exchange assemblies (600) coupled to the coolant loop (501) for at least a portion of the coolant to pass through the one or more heat exchange assemblies (600). The elevated coolant tank (520), which is elevated above at least a portion of the coolant loop (501), is coupled in fluid communication with the one or more heat exchange assemblies (600) of the heat rejection unit (510a, 510b), and facilitates return of coolant to the coolant loop (501) at a substantially constant pressure.
Abstract:
Liquid-cooled electronics racks and methods of fabrication are provided wherein a liquid-based cooling apparatus facilitates cooling of electronic subsystems when docked within the electronics rack. The cooling apparatus includes a liquid-cooled cooling structure mounted to a front of the rack, and a plurality of heat transfer elements. The cooling structure is a thermally conductive material which has a coolant-carrying channel for facilitating coolant flow through the structure. Each heat transfer element couples to one or more heat-generating components of a respective electronic subsystem, physically contacts the cooling structure when that electronic subsystem is docked within the rack, and provides a thermal transport path from the heat-generating components of the electronic subsystem to the liquid-cooled cooling structure. Advantageously, electronic subsystems may be docked within or undocked from the electronics rack without affecting flow of coolant through the liquid-cooled cooling structure.