Abstract:
PROBLEM TO BE SOLVED: To provide an apparatus and a method of cooling an electronic device such as an IC chip or the like uneven in power density distribution, mounted on a package substrate upside down with efficiency and low operating pressure. SOLUTION: The invention comprises the apparatus and the method operated by microchannel cooling which locally improve cooling capability with respect to a (hot spot) region of the IC chip higher than an average in power density by operating a mechanism varying local cooling capability with respect to a high power density region (namely, "hot spot") of a semiconductor chip higher than the average in the power density. For example, an integrally formed microchannel cooling device (or a microchannel heat sink device) cooling the IC chip is designed so that the local cooling capability with respect to the high power density region (namely, "hot spot") of the IC chip higher than the average in the power density can vary in such a way that a cooling fluid flows and distributed uniformly, and that a pressure drop along a cooling liquid passage is suppressed to a minimum. COPYRIGHT: (C)2006,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To provide a liquid crystal display panel having heightened luminance and heightened radiation distribution of light emitted from the liquid crystal display panel. SOLUTION: In a direct view liquid crystal display device 1, a lenticular lens sheet 5 is disposed on the rear surface of the liquid crystal display panel 4. Light irradiating lenses 52 of the lenticular lens sheet 5 once converges in the liquid crystal display panel 4 and subsequently diffuses and when the light is emitted from the liquid crystal display panel 4 the radiation distribution of the light is broadened. Consequently a bright display screen is realized throughout a wide viewing angular range. COPYRIGHT: (C)2004,JPO
Abstract:
PROBLEM TO BE SOLVED: To provide a multi-chip module having a liquid-cooling module which provides a thermal conductive path having a different thermal resistance for each chip, and minimizes a stress at a thermally conductive adhesive portion by heat in order to dissipate effectively heat from the plurality of chips having cooling requirements different from each other, and to provide a method for manufacturing the same. SOLUTION: An electronic apparatus is thermally conductively connected to a first chip 12 and a second chip 13, and includes a cooling liquid inlet, a cooling liquid outlet, and a cooling module 20 having a cooling liquid flow path extending from the cooling liquid inlet to the cooling liquid outlet. The first chip is thermally conductively connected to a first portion to be cooled by a cooling liquid flowing in the cooling liquid flow path in the cooling module, and the second chip is thermally conductively connected to a second portion to be cooled by the cooling liquid being warmed as a result of cooling the first chip and flowing in the cooling liquid flow path in the cooling module. COPYRIGHT: (C)2010,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a method for simplifying formation of an ohmic contact for a thin film transistor. SOLUTION: The method for forming an ohmic contact for a semiconductor device includes a step of forming a metal-contained layer containing integrally formed dopants. The metal-contained layer is patterned to form a constituent element of the semiconductor device, and a semiconductor layer is deposited in contact with the metal-contained layer. The semiconductor device is annealed so that dopants are outwardly diffused from the metal-contained layer within the semiconductor layer to thereby form an ohmic contact.
Abstract:
The present invention provides a method of alignment between sheet materials , a method of alignment, a substrate assembling method, and an aligning apparatus, which a re capable of easily and surely performing highly accurate alignment and suppressing a reduction in material yield. After alignment performed based on a band-like light as a reference, alignment is performed based on a joint of a condenser lens portion of a lenticular lens as a reference. More specifically, the deviation of a liquid crystal display cell in a rotational direction is corrected by using a light emitted from a light source and condensed to be band-like at the lenticular lens as a reference. Subsequently, by changing a depth of focus of a microscope, measurement is performed for positions of a black matrix of the liquid crystal display cell and the joint of the condenser lens porti on of the lenticular lens. Then, based on the result of the measurement, horizontal alignment is performed between the liquid crystal display cell and the lenticular lens.
Abstract:
A reflective spatial light modulator array is described incorporating liquid crystal devices, mirrors, a semiconductor substrate, electrical circuits, and a reflector/absorber layer for blocking light. The invention overcomes the problem of shielding light from semiconductor devices, high optical throughput and contrast, pixel storage capacitance to hold the voltage across the liquid crystal device and precise control of the liquid crystal device thickness without spacers obscuring the mirrors.
Abstract:
The present invention provides a method of alignment between sheet materials , a method of alignment, a substrate assembling method, and an aligning apparatus, which a re capable of easily and surely performing highly accurate alignment and suppressing a reduction in material yield. After alignment performed based on a band-like light as a reference, alignment is performed based on a joint of a condenser lens portion of a lenticular lens as a reference. More specifically, the deviation of a liquid crystal display cell in a rotational direction is corrected by using a light emitted from a light source and condensed to be band-like at the lenticular lens as a reference. Subsequently, by changing a depth of focus of a microscope, measurement is performed for positions of a black matrix of the liquid crystal display cell and the joint of the condenser lens porti on of the lenticular lens. Then, based on the result of the measurement, horizontal alignment is performed between the liquid crystal display cell and the lenticular lens.
Abstract:
A reflective spatial light modulator array is described incorporating liquid crystal devices, mirrors, a semiconductor substrate, electrical circuits, and a reflector/absorber layer for blocking light. The invention overcomes the problem of shielding light from semiconductor devices, high optical throughput and contrast, pixel storage capacitance to hold the voltage across the liquid crystal device and precise control of the liquid crystal device thickness without spacers obscuring the mirrors.
Abstract:
Halbleiterstruktur, aufweisend:mindestens einen Halbleiterprozessor-Wafer, der starr an einer von Einheiten freien Seite an einem flüssigkeitsgekühlten Substrat angebracht ist, dessen Wärmeausdehnungskoeffizient dem des Halbleiterprozessor-Wafers gleich ist, wobei der Halbleiterprozessor-Wafer zwei oder mehr Chips enthält, die durch eine On-Chip-Verdrahtungsebene miteinander verbunden sind, wobei Substrate jedes Chips an einzelnen Chips auf einer Einheitenseite des Halbleiterprozessor-Wafers angebracht sind, wobei die Chip-Substrate eine kleinere Fläche einnehmen als die Chips auf dem Wafer, undeine oder mehrere an jedem Chip-Substrat angebrachte Karten, wobei eine Hauptfläche jeder Karte senkrecht zu einer Fläche des Halbleiterprozessor-Wafers steht.
Abstract:
Eine Halbleiterstruktur enthält ein Substrat mit Kühlschichten, Kühlkanälen, Kühlmittelzuleitungen und -ableitungen in Fluidverbindung mit den Kühlkanälen, und eine Einheitenschicht auf den Kühlschichten mit einem oder mehreren Verbindungspunkten und eine Einheitenschichtfläche. Der Wärmeausdehnungskoeffizient der Einheitenschicht ist im Wesentlichen gleich dem der Kühlschichten. Eine Mehrzahl von Laminatsubstraten sind auf der Einheitenschicht angeordnet und elektrisch mit dieser verbunden. Der Wärmeausdehnungskoeffizient des Laminatsubstrats ist von dem der Einheitenschicht verschieden, jedes Laminatsubstrat ist kleiner als ein Bereich der Einheitenschicht, auf dem es angebracht ist, und jedes Laminatsubstrat enthält Lücken zwischen Seiten benachbarter Laminatsubstrate. Die Laminatsubstrate sind über die Lücken zwischen ihnen hinweg nicht elektrisch oder mechanisch miteinander verbunden, und die Laminatsubstrate sind klein genug, um ein Aufwölben der Einheitenschichten, der Verbindungsschichten und der Kühlschichten aufgrund von Wärmeausdehnung zu verhindern.