Abstract:
A structure and method for a metal replacement gate of a high performance device is provided. A sacrificial gate structure (260) is first formed on an etch stop layer (250) provided on a semiconductor substrate (240). A pair of spacers (400) is provided on sidewalls of the sacrificial gate structure (300). The sacrificial gate structure (300) is then removed, forming an opening (600). Subsequently, a metal gate (1000) including an first layer (700) of metal such as tungsten, a diffusion barrier (800) such as titanium nitride, and a second layer (900) of metal such as tungsten is formed in the opening (600) between the spacers (400).
Abstract:
A structure and method for a metal replacement gate of a high performance device is provided. A sacrificial gate structure (260) is first formed on an etch stop layer (250) provided on a semiconductor substrate (240). A pair of spacers (400) is provided on sidewalls of the sacrificial gate structure (300). The sacrificial gate structure (300) is then removed, forming an opening (600). Subsequently, a metal gate (1000) including an first layer (700) of metal such as tungsten, a diffusion barrier (800) such as titanium nitride, and a second layer (900) of metal such as tungsten is formed in the opening (600) between the spacers (400).
Abstract:
A method is provided for forming a microstructure with an interfacial oxide layer by using a diffusion filter layer to control the oxidation properties of a substrate associated with formation of a high-k layer into the microstructure. The diffusion filter layer controls the oxidation of the surface. The interfacial oxide layer can be formed during an oxidation process that is carried out following deposition of a highk layer onto the diffusion filter layer, or during deposition of a high-k layer onto the diffusion filter layer.
Abstract:
A structure and method for a metal replacement gate of a high performance device is provided. A sacrificial gate structure is first formed on an etch stop layer provided on a semiconductor substrate. A pair of spacers is provided on sidewalls of the sacrificial gate structure. The sacrificial gate structure is then removed, forming an opening. Subsequently, a metal gate including an first layer of metal such as tungsten, a diffusion barrier such as titanium nitride, and a second layer of metal such as tungsten is formed in the opening between the spacers.
Abstract:
A structure and method for a metal replacement gate of a high performance device is provided. A sacrificial gate structure is first formed on an etch stop layer provided on a semiconductor substrate. A pair of spacers is provided on sidewalls of the sacrificial gate structure. The sacrificial gate structure is then removed, forming an opening. Subsequently, a metal gate including an first layer of metal such as tungsten, a diffusion barrier such as titanium nitride, and a second layer of metal such as tungsten is formed in the opening between the spacers.
Abstract:
Ausführungsformen der vorliegenden Erfindung zielen auf einen BEOL-kompatiblen chipintegrierten Metall-Isolator-Metall-Entkopplungskondensator (MIMCAP) ab. Dieser BEOL-kompatible Prozess weist vor der Erzeugung der oberen Elektrode eine Wärmebehandlung zum Induzieren eines Amorph-Zu-Kubisch-Phasenüberganges in der Isolierschicht des MIM-Stapels auf. Bei einer nicht einschränkenden Ausführungsform der Erfindung wird eine untere Elektrodenschicht erzeugt, und eine Isolatorschicht wird auf einer Oberfläche der unteren Elektrodenschicht erzeugt. Die Isolatorschicht kann ein amorphes dielektrisches Material aufweisen. Die Isolatorschicht wird derart wärmebehandelt, dass das amorphe dielektrische Material einen Übergang in die kubische Phase durchläuft, wodurch ein dielektrisches Material in der kubischen Phase erzeugt wird. Eine obere Elektrodenschicht wird auf einer Oberfläche des dielektrischen Materials der Isolatorschicht in der kubischen Phase erzeugt.