Abstract:
A method for electroplating a gate metal (9) or other conducting or semiconducting material on a gate dielectric (2) is provided. The method involves selecting a substrate (3, 4), dielectric layer, and electrolyte solution or melt, wherein the combination of the substrate, dielectric layer, and electrolyte solution or melt allow an electrochemical current to be generated at an interface between the dielectric layer and the electrolyte solution or melt.
Abstract:
A method of fabricating a complementary metal oxide semiconductor (CMOS) device, wherein the method comprises forming a first well region (103) in a semiconductor substrate (102) for accommodation of a first type semiconductor device (130); forming a second well region (104) in the semiconductor substrate (102) for accommodation of a second type semiconductor device (140); shielding the first type semiconductor device (130) with a mask (114); depositing a first metal layer (118) over the second type semiconductor device (140); performing a first salicide formation on the second type semiconductor device (140); removing the mask (114); depositing a second metal layer (123) over the first and second type semiconductor devices (130,140); and performing a second salicide formation on the first type semiconductor device (130). The method requires only one pattern level and it eliminates pattern overlay as it also simplifies the processes to form different suicide material over different devices.
Abstract:
A MOSFET structure and method of forming is described. The method includes forming a metal-containing layer (56) that is thick enough to fully convert the semiconductor layer (22) to a semiconductor metal alloy in a first MOSFET type region (40) but only thick enough to partially convert the semiconductor layer (20) to a semiconductor metal alloy in a second MOSFET type region (30). In one embodiment, the gate stack in a first MOSFET region (40) is recessed prior to forming the metal-containing layer (56) so that the height of the first MOSFET semiconductor stack is less than the height of the second MOSFET semiconductor stack. In another embodiment, the metal-containing layer (56) is thinned over a first type MOSFET region (40) relative to a second type MOSFET region (30) prior to the conversion process.
Abstract:
PROBLEM TO BE SOLVED: To provide a metal diffusion barrier layer having excellent bonding properties to metals and dielectric materials. SOLUTION: An electrical interconnect structure where the TaN layer of a hexagonal phase is incorporated between a first material such as copper and a second one such as Al, W, and PbSn, and a barrier layer is disclosed. Additionally, the multiplayer of TaN of the hexagonal phase and α phase Ta is disclosed as the barrier layer. The problem that copper diffuses into a desired material to be separated during annealing at 50 deg.C can be solved.
Abstract:
A method of forming a dual self-aligned fully silicided gate in a CMOS device requiring only one lithography level, wherein the method comprises forming a first type semiconductor device (270) having a first well region (253) in a semiconductor substrate (252), first source/drain silicide areas (266) in the first well region (253), and a first type gate (263) isolated from the first source/drain silicide areas (266); forming a second type semiconductor device (280) having a second well region (254) in the semiconductor substrate (252), second source/drain silicide areas (256) in the second well region (254), and a second type gate (258) isolated from the second source/drain silicide areas (256); selectively forming a first metal layer (218) over the second type semiconductor device (280); performing a first fully silicided (FUSI) gate formation on only the second type gate (258); depositing a second metal layer (275) over the first and second type semiconductor devices (270,280); and performing a second FUSI gate formation on only the first type gate (263).
Abstract:
A semiconductor structure is provided that includes a V t stabilization layer between a gate dielectric and a gate electrode. The V t stabilization layer is capable of stabilizing the structure's threshold voltage and flatband voltage to a targeted value and comprises a nitrided metal oxide, or a nitrogen-free metal oxide, with the provision that when the V t stabilization layer comprises a nitrogen-free metal oxide, at least one of the semiconductor substrate or the gate dielectric includes nitrogen. The present invention also provides a method of fabricating such a structure.
Abstract:
A semiconductor device such as a complementary metal oxide semiconductor (CMOS) comprising at least one FET that comprises a gate electrode comprising a metal carbide and method of fabrication are provided. The CMOS comprises dual work function metal gate electrodes whereby the dual work functions are provided by a metal and a carbide of a metal.
Abstract:
A structure and method for a metal replacement gate of a high performance device is provided. A sacrificial gate structure (260) is first formed on an etch stop layer (250) provided on a semiconductor substrate (240). A pair of spacers (400) is provided on sidewalls of the sacrificial gate structure (300). The sacrificial gate structure (300) is then removed, forming an opening (600). Subsequently, a metal gate (1000) including an first layer (700) of metal such as tungsten, a diffusion barrier (800) such as titanium nitride, and a second layer (900) of metal such as tungsten is formed in the opening (600) between the spacers (400).